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PREFACE

. A

The present work makes no pretense at being more than a
textbook; the subject matter is classical and the only at‘&ﬁmbt at
originality is in the choice of topics and the manner of préséntation.
A conscious effort has been made to have the style thadiof a class-
room lecture and to divide the material in such a wery that the basic
parts of each chapter may be presented in g fifty-minute period,
although in many cases the details will have to e assigned for out-
gide study. Accompanying every chapter is Ja'sét' of exerciscs of varied
difficulty, some designed to illustrate the,lesson topics and others,
to extend them and open new horizofig"

In mimeographed form this matepial has been used for a number
of years at Michigan State College, The background for its produe-
tion was that available booksseemed to be either too short or too
long, too easy or too advanced, for a short course, involving twenty-
five to thirty lessons, offesed to a mixed group of undergraduate and
beginning graduate students.

It is perhaps characteristic of the subject matter that certain
topics will appedl’especially to one person and not to ancther. To
a beginner it ma¥ be difficult to docide whether a topic which does
not interest“bim is required for later chapters. Therefore, as a foot-
note to ‘&“tiﬂe of each chapter, there is a brief discussion as to
whethér, in the author’s opinion, the chapter is a basic one, contain-
ing:r:[ﬁnimum essentials, or is of a supplementary nature, containing
thaterial that might be omitied from a short course.

For example, the experienced reader will recognize the slide rule
modulo 29 to be a supplementary item as far as the theory of num-
bers is concerned ; but the anthor hopes that many teachers will agree
that here is a device that may pique student interest and whether
class time can be devoted to a topic is relatively unimportant once
interest is aroused. '
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In a few places where a part of a supplementary chnpf,er ‘is re-
quired in a later chapter, the necessary cross reference is indicated
in the introductory footnote. It is hoped that these notes may help
the inexperienced reader not to spend too much time on retatively
unimportant topics at the expense of basic materials.

The quotations with which the chapters begin are meant only for
pleasant meditation, but in places they are almost in context and
veflect, in part, the attitade which the author would hope to implagt
in his student readers. O\

Acknowledgments and references are to be found at{“yarivus
places in the text, but two of more personal nature demi,ari@ relating
here. N

¥t was Professor A. J. Kempner who first showed\mé that mathe-
matics could be a delightful, creative, challedging pursuit. “Just
for the fun of it,” he said as he set me to readidg Carmichael’s mono-
graph. I still recall the kindly way he sent.n® off to read for myself
in Dickson’s Hisfory how Descartes had aniicipated me by several
‘hundred years in devising some multipli‘perfect numbers.

It was Professor C. C. MacDuffee “whose forbearance and encour-
agement made life as a graduaté student brighter. In retrospect this
book seems little more thap alt elaboration of his explanations; yet

it is my hope that these }éssons will in some way attract new minds

10 mathematics and, r@m‘ber theory and thus extend the chain of
indebtedness, Y N

] : : B. M. Srewart
Larising, Michigan :
A ’
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» Die ganzen Zohlen hat Goft gemachi,
alles endere isl Menscheruperk.
—L. KRONECKER

caaprer 1°

1.1. Prerequisites. In this textbook on the theory of numbers we
shall assume that the student has (,ompieted the usual work in college
algebra, so that he is weli acquamted with such topics as symbols of
grouping, exponents, and factoring. We want to make use of inequal-
ities and absolute value andye include below a brief review of these
essential notions. Althouigh we shall make occasicnal use of ideas
from analytic geomet;r?,\ eginning caleulus, and the theory of equa-
tions, we shall try to'make the exposition of such topics self-contained.
The whole point\&f these preliminary remarks is to encourage the
reader of modeét backgroumd and to point out that our real subject
mallor is 1‘1\01‘8 directly related to grade school arithmetic than it is
to advanbed courses.

However, our work will demand a maturity of attitude and an
imgenuity of mind that will do more than test ability at sums. In
fact’ we shall find that one of the attractions of our subject (and it
has attracted mathematicians, both amateur and professional, for
over 2000 years) is that some of its problems can be stated in such
simple form that the celebrated man in the street can understand
what is wanted, and yet the concentrated efforts of generations of

*Note 1o the reader and instructor: Chapter 1 is a basic chapter, with essential
orientation, lerminology, and references.

1



2 « PRELIMINARY CONSIDERATIONS Chapler 1

workers have as yet failed to yield solutions. N aturally in an intro-
- ductory textbook we shall Present topics that have been well worked
out and problems for which definite methods of attack can be sug-
gested, but even in our somewhat elementary situations the need for
ingenuity and special methods will manifest itself in many problems
and will provide a real challenge to interested and serious students.
Our purpose is to study some of the properties of the ordingry

infegers, i.e., the positive and negative whole numbers and zef oy,

s =3 —~2,-1,0,1,2,3, ... . O
We shall assume that the arithmetic of these numbers jg'well known
to each student; that the addition and mulliplicatiopylables and the
rules of exponents are perfecily understood; and thét"the represenla-
tion of these numbers using the base 10 is compiet’ely mastered, so
that a symbol Kke 7203 is mmediately recognized as an abbrevia-
_ tion for X
7(10)2 + 2(10)2 + 6010) + 3
We shall assume that the algebraic\symbolism in postulates Iike
~ the following i readily interpreted-and that the laws here expressed
are willingly granted (but in g later lesson we shall indicate how these
Ia?vs may be proved ag theoremis on the basis, of course, of other
stll simpler postulates): £
The associatize laws foryaddition and multiplication:

@+8) Ke=a+ (b4, (abye = afbe).
The commufatu{g iaws for addition and multiplication:

ifa+x=b,thena:=b-— .
E‘qr\aﬂ these laws it i understood that g,p,¢ ::re a
\ecessarily different and that the equation ¢ + & = bis always solva-
Ble for z, an integer, without, inventing any !
] We shall assume that the student has su
clate stau'aments like the fo]) b are given intewers
the equation gz ~ bis, in general, impossible of solution in integ:rs.’:

2z =3 respectively.  Of eoyp 0S8 are 2z = 4 and
- . se the student wilj i
to deal with Humbers Jike 3 /2, but th € expected at times

; ! & point is that he must not admit
their use in problems where only the ntegers are undey consideration.

ny integers, nol
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The student must learn fo appreciate the warning: “The statement
that a given equation is possible, or impossible, of solution is meaning-
less until the system in which solutions are sought has been specified.”
From such warnings the student must learn to state theorems,
problems, and solutions with precision.

We need also the concept of inequalily where we write @ < b and
read thal “g is less than b (equivalently we write b > a and re
that “b is greater than ¢”) if and only if there exists a positize number
psuch thata + p = b. For example, —3 < 5 because —3 --§ = 5,
with p = 8 a positive number; but —5 < —3 because <542 =
-3, with p = 2 a positive number. If it seems to thg. reader that
the listing ..., —3, -2, —1,0,1,2,3, ... is a naturabway in which
to order the mtegers, then he a]ready has a good mmxtl\«e idea of the
meaning of @ < b, realizing that it is equivalenttd. saying that in the
above Hsting, ¢ occurs “to the left” of b. "ﬁné symbol ¢ = b will
indicate that @ is either equal to b or lesﬁ\ than &. For example,
x> 0 is a convenient way to say that ¥ 28 positive,” 2 < 0 a way
to say that “x is negative,” while 2 = #/is a way of saying that “z
is non-negative” meaning that x is ither positive or zero. Again, if
z is an integer and is either —2,° —I 0, 1, 2, or 3, then an easy way
to indicate this last resiriction'is to write that —3 < 2 < 4, for this
i3 understood to mean that{miust satisfy both the conditions of being
less than 4 and greate thaln —3; an equivalent statement would be
—2=<g=3.

Two important, £hlés about inequalities are as follows:

If ¢ < b, theda + ¢ < b - ¢ for any number ¢.
If @ < b,'then ac < be for any positive number ¢, but ae > be for
an)?\gerratwe number ¢,
The reade} will soon see why the last rule of mequahty has two
casegif he contrasts the rule of signs for multiplication by a negative
nfmbér with the rule for multiplication by a positive number,

At times we find it convenient to speak of the absolute value (or
numerical value) of a number, using the symbol |a| whose definition
is as follows:

[0|=0; ifa >0, then |a|=ea; ifa <0, then [o]|= —
For example, {6]= 6 and | —10{= 10.
Two important rules about absolute value are ag follows:
|abl = [a] B]; |a + b] <]a]+]b].
The reader can establish these rules by considering the various
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cases that arise according as one of @ or b is zero, according as e and &
have like or unlike skgns, and according as |a] or [b] is the greater
or that |a]=1{b]|.

- Finally, we shall assume that the student is acquainied with the
division algorithm, and to this topic we devote the next section.

L2. The division algorithm. An algorithm is a step-by-step
process, complete in a finite number of steps, for solving a given
problem. By the division algorithm we mean that process with which

the student became familiar jn arithmetic, where he was given, say,
the dividend 712, the divisor 13, and was asked to find-the quotient
and the remainder. By a long division he found \

54 = ¢ ~A\*
b=13[ 712 = d i
1650 0
5200
10

and concluded that the quotier{t‘ié’q = 54 and the remainder is
r = 10, with the process endingeab this point because 10 < 13. Cer-
tain steps of the long division: work are tentative; for example, to
find that the first part of the quotient is 50, not 40 or 60, may require
a student who does not“know the multiples of 13 to make several
trials, but not more than nine (fewer, we hope!).

In general, the division algorithry is that process, complete in a
finite nu@er of steps, by which {or any given integer g (the dividend)
and any 8LV ROn-zero integer b (the

PR o cger b divisor), we find the values of
L 1€ quotient) and the non-negative int in-
o g}l\%at ent) _g. integer r (the remain
N e=gb+r, 0= r<ibl.
" :We consider first the cage when b ig g positive integer, for then
\Irom the standard ordering of the integers

<—3<-2<.—1<0<+1<+2<+3<

d ordering of the multiples of 4:

- —b<0<h <2y
‘Then. any given integer @ myst either he g o

_ =qb—|—0;orumustfallwit'
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exactly as described in the division algorithm., When a Is posilive
the long division process aliows us to find ¢ and r in a firite number
of steps, but the case when ¢ is negative requires special consideration.

For example, il @ = —712 and b = 13, then from our previous
example we have ¢ = —54b — 10, but this remainder is negative;
however, by subtracting and adding 13, we find « = —55b + 3 and
with g = —55 and r = 3 we salisly the requirement 0 < r < b,

In: general, if for @ > 0 we have found a = Qb, then for —a we may®
write —a = ¢b + r where we have set g = —Q and r = 0; bui-if
a=0b+4 R, 0 < R <b, then for —¢ we may write —a—qB—I—r
where we have set = —(Q + D and r=5b— R; in hoLh crrcum-
stances r satisfies the requirement 0 £ r < b C

If b i negative, then [h| is positive, and hence.yfé'may use the
previous arguments to find Q and r so that e = Q'Hp¥r, 0 = r < |bl.
Then noting that {b| = —b and taking ¢ ,=\—%Q, we may write
a=qb+r, 0=r<|{bl \

This conciudes the description of thé\division algorithm excepl
for the remark that the italicizing of .\ Jthe integer ¢ and the integer
r ...” was purposeful, because for @ g:iven pair of integers ¢ and b
the corresponding ¢ and r are indéed unique.

For if we suppose that there are two sets of solutions, say,
a=gb+r 0 =r<|b amsla—qlb+r1,0 = r <|b|; then when
we equate the two expredsions [or @ and rearrange the result we have
@—q)b=r—r soﬂt%at ry — ris a mulliple of b, But the inequal-
ities which r and.r satls[y allow us to deduce that —b < rp — r < b.
Hence the only Guitable multiple of b is 0. " But ry — r = 0 shows
ry = r; then siviee b % 0, (¢ — g1)b = O implies ¢ — ¢ = D or ¢ = .
Thus the \cp\\xﬁ,ient and remainder in the division algorithm are both
unique, + \\

O
1.3, Related material. In studying, teaching, and writing about
this subject, we are much in debt to most of the following authors
and their books. For convenience of relerence we list them here and
suggest that they be used for collateral reading and further research.

Carmichael, R. ., Theory of Numbers. Mathematical Monographs, No.
13. New York, Wiley, 1914,

Dickson, L. E., Infroduction to the Theory of Numbers. Chicago, University
of Chicago Press, 1931.
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______ » Modern Elementary Theory of Numbers. Chicago, University of
Chicago Press, 1939. ) L

______ » Hislory of the Theory of Numbers. Carnegie Institution, Vol. I,
1919; Vol. 1I, 1920; Vol. III, 1923.
* Hardy, G. H., and Wright, E. M., An Introduction lo the Theor y of Num-
bers. Oxford, Clarendon Press, 1938, '

MacDuffes, C. C., Infroduction to Abstract Algebra (Chapter 1), New
York, Wiley, 1940, N\

Ore, 0., Number Theory and Iis Hislory. New York, McGraw-11ill, 1918,

Uspensky, J. V., and Heaslet, M. H., Elementary Number Thearyy New
York, McGraw-Hill, 1939, )

Wright, H. N., First Course in the Theory of Numbers. Ngw';,Y ork, Wiley,
1939. 9,

Any large library will provide many other .refféi'ence books in
English, French, and German. We are especially fond of the well-
written books of E. Landau, such as his Grundiggen der Analysis and
Vorlesungen iiber Zahlentheorie (Vol. I whiQh are available in Chelsen
reprints. The first of these is now available in English translation as
Foundations of Analysis, New Yorlg,~,Chélsea, 1951.

1.4. The position of our t;ltﬂ;jéct. From Carl Friedrich Gauss
(1777-1855), the “Prince of Mathemati
“Mathematics is the queert of the sci
queen of ma_t.hematics{fx By arithmetic Gauss meant our subject,
theory of numbers, Sau\d_ his attitude in regard to the queenship was
based on two almost opposite attributes

cians,” we have the saying:

‘may hgi;‘:c;n the other hand, most of the number systems used in
more praetical hra

betsip.fhuﬂding blocks. So it ig perhaps not tog surprising that there
' m}f@e hee:} some very remarkable interchanges of ideas, problems,
and solutions between the vory towers of number theory and the
laboratories of applied mathematicg,
-Histi:urically our subject hag

N .
equigon. Earh: 0. our work we will encounter the names of
II;:"E goras and Euchd——yes, the Euclid of fame in geometry, the

ter an important contributor to gyr subject ag early as 300 B.c.
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From these earliest men to ihe present there is hardly a mathema-
tician of note who has not contributed in some way to number theory.
As we pursue the subject we find some names such as those of Fermat,
Euler, Legendre, Gauss, Eisenstein, and Jacobi occurring often; but
other men of lesser fame are remembered oo, sometimes for just one
particular theorem,

Dickson’s monumental “History of the Theory of Numbers” is a
mine of historical and factual information that the student will fiid®
particularly valuable if he makes some little discovery of hig*awn
(and one of the nice features of our subject is how soon thestudent
can explore for himself) and wonders whether it has been\pitblished
before. Qur subject is not a dead one, many famous.problems are
still being attacked and new ones are being proposed, @and the most
recent journals carry articles and problems that edutern our course
directly. At certain places in the development.we'will suggest some
generalizations of the subject, and then, for %he interested student,
whole new fields of exploration and study Wil be opened.

EXERCISES Ny
Ex. 1.4. For any integer z, provethat z2 = 0.
Ex. 1.2. Bupposing 2 to be an{integer interpret the following statements
(i.e., find all soluticns igii’njiegers):
(@) 0 <= << 95 (b) %K I7 () 2 = 95 (d) [«] <9
Ex. 1.3 Supposing « tb,be any integer show that:
{a) flz) = 2* — #&™- 5 satisfies f(z) > 0;
{b) glz) = 2? ; oz -I- 6 satisfies (=) = 0.
Ex. 1.4. Proye the two rules about inequalities given in the text.
EX. 1.5. Ii‘\a;b', ¢ are integers with ac > be and ¢ > 0, does it follow that
a>
Ex. 1.6000f a < band b < ¢, prove that ¢ < ¢,
X/ 1#/ Prove the two rules about absolute value piven in the text.
EX'8. In each of the following cases find integers g and r such that
a=gh+r, 05 r<|b|:
(a)a=T7143,b=17;(b)a = — 2047, b = 130; (c) a = — 6080, b = —42,



W1t is well in order l aid the understanding
and memory fo choose inlermedivle truths
(whick are called Yeramas, sinee they appear
fa be a digression) whick will shorten the
major proof and yel appear memaorahle and
worthy in themselves of being demonstraied -
and there is real arl in this.

© G, W. LEIBNITZ

Q"

CHAPTER 3 O

NUMBER THEORY

IN THE GAME'OF SOLITAIRE

g Q
2.1 Parity. Almostlevery i
. every textbook in the theory of numbers
_ﬁe:d: gﬁ with a .feyj\liheresting problems and games whose solution
PeNds m somes¥ay on the properties of integers. In fine with this

duplicate the usual examples, we presenl

@ Ues01] the game of Solitaire ) .
the blt’ Qhimber. theory that 1 - But first we shall give

. requi i - .
associaled with the game, quired in the mathematical th eory

By'the division aleog; m w =

£\ ) gorith hen p . .

~Bossible rémainders are p = 0 and r = 1.2walld ® 18 an Integer, the
18 called even and hag the form ; i

@ = 2q; wh = i i
called od . 7; When r = 1, the integer ¢ is
iy aiedb?tf e}ias the form ¢ = 2041 If two given integers s

en, or both odd, then s and £ are said to be of the

same parity; but if one of sand {
: is
and ¢ are said to be of different parit‘;rven, el the other odd, then
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The ohservation which we shall need and which we shall call a
“lemma,” meaning a tool theorem or subordinate theorem wuseful
in proving other more interesting or more important theorems, is as
follows:

Lemma: The difference s — ¢ of two given mtegom s and £ is
even if and only if s and.{ are of the same parity.
Progf: The four possible cases are as follows:
2§ — 2T = 2(S — T),
@S+ 1D —-2T=285-1T) +1, ~\
@28 +1) — 2T +1) = 2(S - T, O
28 — 2T + 1) = 28 — T — B 1.

2.2. The game of Solitaire.. Of ancient orrg\in is the game which
we are about to describe, although the ﬁxst\mathematlcal mention
of it seems to be by Leibnitz, The game' Of Solitaire is played upon
a field, of arbitrary but fixed shape, cehsisting of squares arranged in
rows and .columns. On certain ef these squarcs appear playing
pieces, at most one piece to a sqﬂare A move, or jump, is possible
when on three ad_]acent squares A,B,C of a row or column (but not a
dlavonal) there are p]eces 0u*A and B, but none on €. The jump
consists in moving thegieee on 4 to € and removing the piece on B
from play.. The objgct of the game is by a succession of jumps (of
course at least oneduare must be empty initially so that the game
can begin) to leaye the remaining pieces in some slated configuration
upon the field\ (msuaily to leave only one piece on the field).

The o_bje}\}t" of a mathemalical study of Solitaire is to show that
some proposed games of Solitaire are impessible of solution or that
the fmal outcome is limited in some way. Since we anticipate using
the _theory of integers, it is natural to write down equations which
describe the progress of the game and which have as variables the
number of pieces and the number of jumps, for ncither fractional
pieces nor fractional jumps are allowed, and this procedure will
surely lead to a Diophantine preblem. SBuch an analysis is possible
if we first label the squares along one set of diagonals, say those
running from upper left to lower right, in a systematic manner: first,
say, a diagonal colored green, the next colored purple, the next tan,
aud the next, green, and then all the rest in cyelic manmer: purple,
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tan, green, purple, tan, green, etc. For example, in Figure 1 such a
labeling has been carried out for a rectangular 7-by-5 field with the
obvious abbreviations: G for green, P for purple, and 7 for tan.

With such a labeling it becomes possible to as-

GlpiTIGIP sert that every jump ending on a square of one
TIG)|PIT|G| color increases by one the number of picces on
PITIG|P|T| squares of that color and decreases by one the
GI{P|T|G|P| number of pieces on each of the other two calors.
TiG|P[7|c| LetG,PT begiven the new meaning of ifdicat-
P|riglp|r| Ing respectively, the number of pieces initinlly
G|P|7|Glp| Present on squares of green, purple, ar.fan color.

Let gpt indicate, respectively,~the’number of

Fleoes 1 ;

jumps ending on squares of greén, purple, or tan
color. Let G', P T indicate, respectively, theiumber of pieces
finally present on squares of green, purple, ontan color.

Then using our previous observation ahait the effect of each jump,
we ﬁ1-1d that these infegers must satidfy) the following system of
equations: O
@.0 G+g~p—t=G’,.‘P.’—g+p—i=P',

By any of the usual methods, Such ag adding the equations in pairs,

We can show the system (280 be equivalent to the following system

of equations: ) )

@2 =P+ &\—- P4+ T, 2p = T+6) —(r+ G,
0Nt=G+P) — @ + P,

Inasmuch ag all the variables gre Integers, we are in a position to
apply the 'le’ ma given in 2,1,* and to conclude that one sef of neces-
sary conditigas for the game of Solitaire to be possible s that the
]jnltlai. \aﬁd'ﬁnal distribution of the pieces are such that
(2'3).' \ P+ Tand pr o are of the same parity,

O T +Gand 7 + G’ are of the same parity,
¢ :T G4 P' a'nd G 4 P’ are of the same parity,
N dl;;?dset ];)f conditions (2.3) is sometimes powerfy] enough in itgelf
& that a propoged game of Solitaire ig impossible of solution.
Anotl}er set of necessary conditions is obtained Iy labeli i
the diagonals that run fr i it Wl?h cotors
of condigom 1 o 9m upper right to lower left. If either get
118 10 be satisfied, then the game is impogsible. That

*' .
A bold-face reference, as by 2.1, is to the firet section of Chapter 2
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these two sets of conditions are necessary, but not sufficient, to
guarantee a solution may be shown by the reader by studying a
very small playing field or one with widely separated pieces. When
the two sets of conditions are satisfied, one can sometimes show the
existence of a solution to the game by the perhaps non-mathematical,
but amusing, process of carrying out a suitable sequence of jumps.
Let us apply this theory to the 7-by-5 field shown in Figure 1,
supposing that initially all squares except the fop left one are ocefis
pied sothatG = 11, P = 12, T = 11. Suppose that only one piete
is to be left at the end of the game, o that (/,P',T",}is elther 10 0}
or (0,1,0) or (0,0,1). Doth the first and last of these suggested end-
ings violate (2.3), so to attempt to leave the final plece onthe lower
left square, for example, is o attack an impos-

gible game. However, the ending (0,1,0) is com«N N2 Tz (¥ 5[ &
patible with the conditions (2.3). Rlv|Blely
Now let us employ a sct of labels on the other

Y B|R|Y |B
diagonals, say red, blue, and yellow mdlcatéd by ¢
R,B, and Y, respectively, as in Figure2y" Then B|R|Y|BIE
using the same type of symbolism g% Jbefore, we |B|Y|BIR|Y
find that the proposed game has Ros 12, B = 11, Y|B|R|Y|B
Y = 11. Conditions aua[ogousjto (2.3) thenre- |BlRiY|B|R
quire (B, B’,Y") = (1,0,0), or’stherwise, the game Fieuns 2

will be impossible. NS

Combining these tw Bets of conditions we see that if the proposed
game is possible, beginning with only the upper left square empty
(and closing with but one piece on the field, then
\J the final ptcce musl be on one of the squares

X %Y marked X in Figure 3, for these are the only
Y squares carrying both a purple and a red label.

N To the uninitiated there must surely be some-

AP X thing of black magic in such assertions, and we

feel the fascinating lure of number theory when
we see that the whole matter depends essentially
on setling the problem in such a way that we can
apply the trivial lemma of 2.1.

X X

Ficuae 3

2.3, “Red Cross’* Solitaire. To illustrate a some-
what more difficult variation of Solitaire, let us consider the 7-by-5 field
and study the possibility of having but one square initially empty and
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the final five pieces in the position shown in Figure 4. Since we first
proposed this game as a means of attracting attention to a charity
drive, we have taken the liberty of calling it “Red Cross” Solitaire,
The complete field hag P = 12,G = 12, T = 11.
In the “Red Cross” ending, P'=3, (/=1 ,7v=2,
Hence if but one square is empty initially, the
parity conditions (2.3) can be satisfied ouly if Lhe
empty square is a P-square. Similarly, with{Je-
—1 lerence to the other set of diagonals, the empty
- Square must be a B-square. Thus a_iftsacy
—{  condition is that the initial configuration’be as in
Case 1 or Case 2 of Figure 5. That€ither of these
Frovne 4 conditions is also sufficient we show'by producing
the play-by-play solution. )
. The reader should, of course, not deny himseH the fun of trying
this game, but if he tires from failures to r«é§ﬁ the desired ending,
he can trace through the plays indicated.l'n\Figure 6. In that figure

the first two rows show how both cages canl be brought into the same

O
QR0
O

w1 [HROOIOL SOOI
__Q__O _Q__@_" _Q___Q_OOO Case 2,

QOIOIIC 000G

QOO0 [CI0ISIIS

QA0 OO 00

VOO0l COI0IOG

Rasecclesisoe

¢ Fiourr 5

gonn, gg@ﬁt the remainder of the solution, in the other rows of the

guggi;;s the same fo_r the two cases. In each diagram a “plus” circle

Shoshﬂw s the piece W]:!.lch 18 to make the Jump and a “minys” circle
8Bows the piece which is to be remo

comnecting the diagrams ghow the s
to be performed. '

me d o 2.2, show that at least some
of the endu.zgs Suggested in Figure 3 are possible hy actually carrying



13

Sertion 3

Q"

\

""RED CROSS5” SOLITAIRE »

OO0 1I010] Clolol[Mok] BBkl o/o] B ® @@ 10
QlGlCo] 1010 RIcolo]_[30|. o[0no] [0 [Dloklolo REEEE) o @ [®)
e} ClOHO|C TleoD 8 SO 1016 oo ol O @ Qo]
OOOOCIO0 RGeS @alolinlea] oo olclc|o O|C O]
O om e ooowoo@ §!§] moeo ol@ X ooo+ Qo 3D
Cloiol] [00] [CloRo] Okt Oy o] Diokm o® @
OISO 0] OB @on! [CoCey GD] ConoD [eje)[E @l Og D [e)
Ol Blo] [0 Bl GloCt Ble ol&l | [Clo] 100 oo oo o 10 o0
CIOIOIOICIO0 IOCIoE [Olo] O0DBE0] Iaooio olciold oo ol
CIOOI0000] DICICBBI0n Doopiol o ale Qoo e

A A _ ¥ v 4 ¥
oloelC0] Kol [olo! RlClol (O] [Cigielo O ol
QOGO OICE DTS Colool oE oD OoIo oI QoL 1 0
f9) O Ol [ClO@® oo ool 1o Clol ale ol IelC o 10 oo
Oloo[OICIO0] [OR[O0] 160! Clooolnl 18] Dokl QO[O O[C ®|D
@] omooo ooomooo clo wo ol DI +@" ooQ+ ol
RISIOCICICIO] [RI[OIO] I0I0) (GBS 1011 [RISo[o A0 9 (&l
QIOI0OICIOC] Kelole] 38 ISDICE] o ololoo oo o ol 16 o
O olel0 Clolohb@old 08 b @} [Oo] 10 BN o ol 1o oo
OOICIOOICI0 [CoRICEOD] [Docne_8! [Clololo B[eie]le] o0
OBOo00 Lolcololno] RooBC] 0 Bk ololor A oo

r A v 4 YA
ClOOICIO00] RICORBICD] [OOC! 10l ] ICIooD ol 10 T4 O
COCVORO] GO0 [ClOCH W@ ICO0Ig0 OISO 1O TAADOID] [T O
o [®®lolon| (Sl 0o DS © >0l 16 ol o il O] 10 ol
CCCICICIOl RIBISIOHIER] CIOO00 ClooBHIo BCOI0 ADIO 0
clolooc[oR] [CICCCiOIon| OOO00] O iICooled ElEle Q.

Fioure 6




14 -« NUMBER THEORY IN THE GAME OF SOLITAIRE Chapler 2

out the game. (In fact, two well-planned attacks, leaving the last three
moves variable, can be found to prove that all six endings are possible.)

EX. 2.2. On the 7-by-5 field, as shown in Figures 1 and 2, prove that if only
the upper middle square is ivitially empty, it is then impossible to end
the game with but one piece on the field.

EX. 2.3. Show that if Solitaire on any field is to end with but one piece on
the field, then G,P,T must not all be of the same parity; and if one of
these three is exceptional, by being of opposite parity to the other t\;%,
then the final piece must be on a square of exceptional color. A\

‘EX. 24. In the lemma of 2.1, is it correct to replace the word “ difference””
by the word *“sum”p \J




W Every word mathematicians tse conveys «
delerminate idea and by accnrate definitions
they excite the same ideas in the mind of the
reader thal were in the mind of the writer . |
then lhey premise a few principles . . . and
Jrom these plain, simple prineiples they have
raised most astonishing speculutions.
—JOHN ADAMS

CHAPTER 3 A

MATHEMATICAL INDUCTION

K7
~“x\“

AN 5

3.1. The axiom of mathematicalinduction. One of the most
useful and most powerful tools of: “mathematics is the principle or
axiom of mathematical inducticii*which is intimately related to the
theory of numbers. Here is(h. proposition so basic that no proof is
expected, but a proposition that we are willing to grant as an essential
characteristic of the positive integers.

It will be assumed’in the statement of the axiom and in the exam-
ples and exerciseg %hich follow that the student is familiar with the
use of the symbel ..., called the ellipsis, which when interposed
between two tuimbers, either in a list of numbers or in an expression
iuvolvingsi(’;p‘x;rations on the numbers, stands for all numbers of the
same lypeswhich infervene between the two given numbers. Often it
is nef:e\ssary to give more than the end numbers, or to insert some
ffﬁmﬁla, or to give a description in words so that it will be absolutely

clear just what type of number is intended in the unwritten ellipsis.

One precise statement of the axiom of mathematical induction is
as follows;

If & set M of positive integers is such that

(I} M contains the integer 1; and

*Chapter 5 iz a basic chapter,
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(II) on the assumption that M contains all the integers 1,2, . . )
it can be proved that M contains the integer n +1;
then the set M contains all positive integers.

It certainly seems that anyone who has considered the process of
counting should be willing to grant that the set A deseribed in the
axiom is such that no positive integer is omitted from the set.

The uses of this axiom are manifold in all branches of mathema tics,
In a later chapter we shal] indicate how the basic laws of additionfand
multiplication, may be established with jtt]e mare than mathematical
induction as background; and in Jater problems we will hécome in-
cereasingly aware of the possibilities of using this schem¢“of proof.

For the present, then, perhaps one simple examplé, “discussed in
detail, with suffice. N

L S

e N

3.2. An example using mathematical induction. Consider
the meaning of, and some way of establjsh{}ig; the following formula:

LES 45+ @l pe

ntegral values of n, By subgﬁﬁﬁing §
2, 3, we find that the formula states that

i'n these'res-peci;ivb cases. We begin to see that this formula is not
h'ke the l}sual,l‘;’)ﬁlr:tion notation, at least on the left side, for the left
side contmgqﬁy changes form as n, changes. In words the proposition
secms to\be ‘as follows: “The sum of the first n, odg nmbers is equal
!;0 tlzez fsﬁua}re of the integer n.” But the formula ig apparently an
mﬁr\uty of 10rmulas, changing ag changes, and i i evidently hope-
essto prove siuch 4 proposition, in the way that laboratory seiences

Vprove laws,” by checking the first thousand cq
: 3 9, E d
1s the definite procedure of ses. What we pee
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the frypolhesis H that the formula is correct in all the cases 1,2,. . ..n,
and then the proving that, as a consequence of the hypothesis H and
previously known theorems, the formula is correct in the case n 4+ 1;
“this step may be called the core of the induclion proaf. Finally, if
(I} end {IT) have been established, we can apply the axiom of mathe-
matical induction and make the eonclusion that the formula wnder
consideration is true for all positive integers (or for all positive
integers beginning with the smallest integer than can be used in{
step (1)). A

~ TIn the example proposed above the complete proof by induetion
should read somewhat as follows: by

Problem: Provethat 1 +3+5+ ...+ (@n— 1)\= .

Proof: We shall use an induction proof on r.

{I) When n = 1, the formula is true becausg-:\l.; 1=,

(ITy W make the hypothesis H that th formula is correct in
each of the cases 1,2,...,n; in particulag){this includes the case n
so that we are assuming that 1 +3 £ 54 ... + 2n — 1) = n%
Let us then consider the next case where n is replaced by n + 1.
On the left side of the formula one pitore summand will appear, a-nd
since 2(n +1) — 1 = 2n + 1 isithe pext odd number following
2n — 1, we find that we have\fo consider the following sum:
143454 . 42— FCu+D)=n+@n+1)=n+17
The first equality is justi}ie\l by the hypothesis A, the se(':ond‘ equality
is justified by a well-ladwn factoring formula, and reading from ﬁr'sl;
to last we find Lhat.:‘vﬁe have established the truth of the formula in
the case n + LY o

From (1) ;\(H'), and the principle of mathematical induction, the
given formald is correct for all positive integers n.

3-3»"“?¥5f'\1’)rds of caution.. In the application of the principle of
mathématical induction the student must be careful to .establ.ish
both (T) and (II). The situation has been Jikened to that which ariges
in the children’s game of lining up toy soldiers (or card-s, or dommo‘.as)
so that if one falls he will knock over the next. If lether no soldier
is pushed over (so that (I) fails) or if some soldier is A.W.Q.L. (so
that (IT) fails), then the complete Jine will not fall.
For example, (I} can be established for the false formula
T+3+4+54...+@ - =n—5"+1ln—06
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using either n = 1, 2, or 3; but (II) cannot be established for this
formula. Infact, a false formula, correct for the first thousand cases
(1), but not correct thereafter, is easily given, as follows:

13+ .. +@r-D=r*+n—VkE—2)... (n—999)n — 1000).
As another example, we can establish (II) for the false formula

1434 ... +@n—1)=n+35 N

N
N

i.e., if the formula were true in the cases 1,2,. . .1, We coubd\prove
it true in the case n + 1, yet this formula is not correct for, any value
of n, so (I) fails to be true in a “big” way. o\

In carrying out the step (IT), which is the core.g'f ‘the proof and
sometimes difficult, the student should be on the alert for some way
of rewriting the formula in the case n 4- 1 80°a¥ 1o involve one, or
even several, of the formulas for the cas.eg‘l,fz,. . ..7t, 80 that the
hypothesis H can be actively employedy for surely one will have to
use the hypothesis H in some way befere being able to complete
step (11). &Y

Finally, we should note that this principle of induction is primarily
a method of proof for a knownr suspected formula, and it is not in
itself a tool for discovering sh formulas. Thus in the problems that
close this lesson, some afthe fun of mathematical investigation is
lost because the formulas are stated without asking the student to
uncover them for himself. But until the principle of mathematical
induction is completely mastered there is not much point in guessing
at formulas phat’one cannot rigorously establish,

o K
£\

.;\EXERCISES

) .J?f“lﬁ&thematical induction establish the following formulas:

BX/ 3.1, 1_—i—2-{—3+‘..+n=n(n-{—1)/2.

EX. 3.2 (:\:——_1)(1+z-i-a:"'+...+x“)=z"’+1—1.

B33 PR P 4 nt = (e + D@0+ 16,

EX. 3.4, 124324524 + (2n— 1)2 = (4nt — ny/3.

EX. 3.5, PB4 2334 +rf = n'(n 4 1)%/4,
31) . .

EX. 3.6. Using ex. 2.5 derive a formula for 1% - 38 4 53 T+ ..o (2R 18

Ex. 3.7 Use the abbreviation » L, read  rfactorial,»

(Compare with =x.

tomeanr|=1.2.3,  r
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EX.

EX.

when r>0; and define 0= 1. Déﬁne (2) =nl/rln—r)! for

0 £ r £ n. Use mathematical induction on n to establish the * binomial
theoram™ which follows:

R AN

e e

.38 Define S(kn) = 1*4+ 28+ 35+ . +nf For a fixed posxtl%e

integer %, use muthematical induction on n 10 prove that ; N

(k+ l)S(k )+ +(k+1)8(2 )+(k+1)80
\

/N

(n+ D~ (n+1).
(Hint: Make good use of Bx. 3.7 with special valu% of z and y.)

3.9. Use the recursion formula given in EX 3\8 to compule, in sucees-
sion, S(1,n), S(2,n), 8(3,n), and S(4,n).

L340, Tt is said Lhat, al the time of Lh&cfeatmn there were placed in

one of those incredible temples at Hanm in Indo-China some 64 golden
washers or digks, no two the same. §in size, all set on one of three golden
needles; and the priesthood ef ‘the temple were set busy moving the
disks, one at a time, to tm}\on.e of the necedles, subject always to the
condition, which held l af the outset, that no disk be placed above a
smaller disk, The ncc{d% were farther apart than the outer diameter of
the Jargest disk. Phe.pricsts were to aim at arranging all the disks on
another one of theheéedies and they were pledged both to move one disk
every minute 4ndl to make their moves so that the goal would be achieved
in the least@umber of moves. When the appointed task was completed,
there wduld come the day of doom for many, but of reward for the
fathf.u] \Naturally, some of the unfaithful, as they watched the ceaseless
aﬁ’[&\’lty at the temple, the shifts by night and day, and the sage noddings
\qf the wise men who directed the laborers, were much concerned as to
Just how soon to expect the judgment day. We could have aided them
considerably, for by sssuming that there are n disks in the problem, we
can show by mathemalical induction that the minimum number of
moves is given by 2* — 1. And a few minutes of translaling 2% — 1
minutes into years will bring considerable comfort to the most un-
faithful. (E. Lucas.)
211, One worshipper al the temple of Hanoi (see EX. 3.40) suggested
that it would be easier for the priests if they arranged the three needles
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in a roew and limited themselves o moving each disk to an gdjacent
needle. But it was discovered that the suggestion was influenced by a
mundane sect of mathematical inductors who had discoversd that to
move 1 disks from one end needle lo the other end needle, under this new
restriction, would require 3" — 1 moves.




Y Arithmetic has a very great and ecom-
pelling effect, elevating the soul lo reason
about abstract number, and if wisible or
tangible oljects are obiruding upen the argu-
menl, refusing lo be satisfied. —-PLATO

CHAPTER 1
O\
7'\ “

REPRESENTATION OF THE INTEGERS’
- Y

4.1. Representation with the basé“b. It is clear that if we
can find some convenient way of reptésenting any positive integer 4,
then the symbol —a can be used~[gr the companion negative integer,
and the symbol 0 can be usedfor the zero, and we will then have a
way of representing all the integers—positive, negative, and zero.
Our scheme of repres}aﬁtétion requires us to use exponents, so it
would be well for the student to review the basic deflinitions and
tules for exponents érid, in particular, to recall that it is convenicnt
1o define p? = iﬁ\'shen b0, .

Represefitation theorem: If b is a fixed positive integer with
1 < b, then Yor any given positive integer a, a non-negative integer 7
can bl found and a set of n + 1 integers: @g,&y,. . .,@s, such that a may
be tepresented uniquely in the following form:

@ =dy + md + ab? ... +ab?
with0 < g; <bfori “nand 0 <a, <b

Proof: (A) We show that at least one representation is possible,

Q‘Chﬁpmr 4 is a supplementary chapter, but casy and something of a diversion.
The ideas are used somewhat in later chapters, particularty Chapter 10,

21
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using mathematical induction on @, Let M be the set of all positive
integers ¢ for which the theorem holds.

(I) M contains 1, for we may take n = 0 and ap = L and salisly
0 <@, <b inasmuch as a major premise of the theorem is that

1< h

{1I) I we assume that M contains all the integers 1,2,. . .,a, then
we can prove that M contains ¢ 4+ 1. Since | < b, it follows that
I <hb<W <k <..., and hence there exisls an integer n .with
0 =n such that b* £ g + 1 < bt By’ the division algorithm
there exist integers @, and r such that a+4+1=qgh" —};r’ with
0 =r<b% Here0 < a,, because 0 = p» — b <a+1 -we a,b™;
and a, < b, because a,b* < q 41 < pr+1, Either we Wave r = 0, so
that ¢ +1 = ¢,b* with 0 =n and with 0 = ag'{dr 14 n and
0 < a, < b, completing the proof for this case; orwg have 0 < r, but
since we also have the fact that p <b* 2 a PN it follows that in
this case the induction hypothesis may be applied to r and we may
write r = q; + @b + .. + aib* for some,\k =20, with 0 < q; <b

when i ¢ k and with 0 < g, < b, Sincg ¥ < azb* < r < b, we find
“k < n. Hence

eFlmatab et L et g

ig a representation of thg’dééﬁred type for ¢ 4- 1, completing the
proof for this case. AN

By (1), and (ID), %tﬂe principle of mathematical induction we
draw the conclusion that M contains all the positive integers and
the proof of part(AY is complete,

(B) We may" show the representation to be unique by showing
!:\ow two 'd,.y‘ﬁ:?'rent. tepresentations would lead to g contradiction.
bupposqyshat C=a,+ab-+ ... 4 Cab™ = ¢y b 4 ... +cb’
with 0.&e; < b when
with 0% e, entsvfnand0<a,,<b,and(}5c,v<bwhen
band 0 < ¢, < b Unless n = f ang a; = E

Atellows by suly

. =c¢ for i =0,1,....n,
d th g traction that § = dy 4~ dib + ... + d.b* with & > 0
and wi 4&&5‘*Ciaﬂd-b<dg<bfo1~i=01 R d 0.
Since dy £ 0, there is a s . R, and d), ==
Then from 0=dhirg

smallest subscript ; « k, such that d; = 0.
we find that di = —b(d

™ gpe
80 tl}at d; is a multiple of p, But |d;

wr L ey

. | < b, hence d; = o, This con-
: shes the umqueness of the representation,
This completes the proof of the th

eoTem,
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4.2. The choice of a base b. The important implication of the

theorem presented in the preceding section is that in addition to

the symbol 0 only b — 1 other symbols are required (allowing repeti-

tions, of course) to represent eny integer @, a total of b symbols!

Anthropologically and geographically and historically speaking, by

[ar the most important choice of the base b is the choice which we

call “ten,” motivated, it is sure, by the usual supply of fingers among

the primates. Here, modified from Hindu-Arabic sources, the gét
of b symbols is as follows: O\

2N\

0, 1, 1+1=2 241=3 3+1=4 4+1553
54+1=6 6-+1=7 7+1=8 8+1L20

\ S
The next following integer is 9 +- 1 = b = 0 + (D) with n = 1.

But our theorem shows that this customary, theice of the base b
is by no means necessary, and indeed the histpry of number repre-
sentation among various peoples in varigus' parts of the world at
various times in history reveals uses of {the bases “five,” “twenty,”
“sixty,” and several others. _

Any departure from the usual gépresentation cannot result in any
really difforent theorems about4he integers. However, it is still true
that for certain problems th& ehoice of some other base than “ten”
may make the proof of a theorem shorter or more easily understood.

For example, using the-notation of the preceding section, we may
desire to reduce the Value of n, and this may be accomplished by
increasing b; of cofitse, this would require additional symbols. Quite
widely advocateds the adoption of the “dozen” or “twelve” system,
wherein wonight write 9 -1 =2, 2 +1 =L, andL 41 = b,

On the gther hand, we may desire to reduce the number of symbols
needed{ &ven at the sacrifice of using larger values of n. The extreme
casey i this direction, is the “binary” or “two™ system, which has -
bedw’especially useful to mathematicians and-designers of some types
of computing machines; in this system the only symbols required
are Gand 1, since 1 41 = b.

To avoid writing the powers of b and the - signs we shall agree to
adopt the following positional notation:

a=a F+ab+ ... Fad?=(a, . .aa)s

where a; occurs in the i + 1 position, counting from the right. The
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‘only danger is that this symbol may be interpreted as the product of
the coefficients, so be wary! Of course the b-subscript speeil'ying the
base may be dropped if the context indicates the vajue of b.

4.3. Representation with the base “six.” Had we boen born
in a certain mountain village on the border between France and
Spain where, so0 the anthropologists teil us, inbreeding has tcsulted
in a whole community of people with six fingers on cach hand, it4s\
conceivable that in kindergarten we might have learned to gauuit
in terms of “sixes,” ie, 0,1, 2 3, 4 5, then “six” whi(:h\'i[\l"ihe
positional notation would be written 10, foliowed by 11, 12313, 14,
15, then 20, 21, ete. We would have learned “additiotﬂf‘é'rf‘d “multi-
plication” tables like the following: (v

N
+10 1 2 3 4 5 X| e i>2 3 4 3
010 1-2 3 4 3 000 0 o o o
1112 3 4 5 19 W01 2 3 4 5
21203 4 51011 &%(02 410 12 14
B304 5 10 11 12 N300 03 10 13 20 93
2140500 11 12 1BV 4|9 4 12 20 24 39
5{5 10 11 12 13<514 510 5 14 23 32 41

Having once learnedithese tables we could have progressed easily
to more complicated\ari

0 m thmet%c—-speaking of unit digits, -digits,
b -.d1g1.ts, ete., cartying, borrowmg, and arranging our harder multi-
pllcatl.ons, _fo;:egce[mp]e, by virtue of the associative and distributive
laws, in rows,and columns, For cxample, to multiple 3204 by 513
we wouldwrite .

AN 3204

M ) 513
N\ : ' 14020
3204
24432

2533300,

But having learned ag we did, we wi
’ : » We will probably find ¢
more convincing, or at least f. probably find the last example

eel that it has been properly checked,
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if we first convert the multiplicand and multlpher o the base ““ten””
as follows:

(3204) = 4 + 0-6 + 262 + 3:6% = (724)y0;
(513)s = 3 + 6 4 5-0% = (189)y;

and then carry out the problem as follows:

724 N .
189 R\
6516 D
5792 B!
724 \
136836. \%
N
Our answer of (136836), we convert o a xgpresentdtl(m in terms of
the base 6 by repeated applications of: thé division algorithm with
the divisor always 6, as follows: 3
1368365
(22806
3801
«Cf 633
quotients § 105
N 17
NN 2
"\1 0
(\
Hencu we find (1 ‘368%6);0 = (2533300); and this checks our previous
W@rk i the “six” systemn.
\TD juslify the last procedure for taking a number given in a known
system, say with the base 10, and converting it, by repeated divisions
in the known system, to a representation with a diffcrent base b,
perhaps b equal to 6, we obscrve that if ¢ = @ + ab + ... + a.b™
thena = (q; + ab + ... + ab™ b + ap;and since 0 = @ < b, wer
see that the division algorlthm a=qgb+r, 0<r<bmust yield
r=ay and ¢ = a; + ash + ... +azp™. Similarly, ¢ = qb + .
yields ry = a3 g = qb + re yiclds re-= (2; etc.

3

» remainders.

[SL I TS N SL e i

=]
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EXERCISES

In the following five exercises (1) carry out the indicated operations,
using the tables given in 4.3, entirely within the “six” system; lhen (2)
" convert the given numbers to the base “ten” and carry out Lhe operalions
in the familiar ten system; (3) convert the answers obtained in step (2) to

the base “six”’; and (4) check the results obtained in step (3) with those
oblained in (1),

X 44, Add (3542)g to (1135). R\,
EX. 4.2. Subtract (3025)¢ from (11111)s, O
EX. 4.3, Multiply (234)s by (531)e. 3

EX. 44, Dividea = (3014)5by ¢ = (12)¢ to find ¢ and r so (Hat a’= ge + r,
d=r< AN

BX. 4.5. Use the square root extracti
(24041 ).

EX. 46. Use the representation of inte

on process to find the square root of
I x.\\’ gt k) Wi v
gers i 4he “binary” or “two




P Euclid is the only man to whom there ever
came, or can ever come ugain, the glory of
having successfully incorporaled in his oun
writings all the essential pariz of the aceumnu-
laled mathematical knowledge of his time.
—D. E. SMITH

CHAPTER O’ . Q

THE EUCLID ALGORITHM 7.

A
&
’..X\

NN

5.1. Classification of the 1ntqgers by divisibility properties.
If ¢ = ab, then ¢ is called 2 mult;pl‘e of b, and b, a divisor or factor of ¢.
The zero is exceptional from j;hls spoint of view since 0 is a multiple of
every integer.

if ab = 1, then b i {umi The only units among the ordinary
integers are 41 and, —

If p is not a unit'afid 1f p = ab implies that either @ or b must be
a unit, then p ig & prime. The first five prime integers are 2,3,5,7,
and 11. 3 .

An integepAvhich is neither zero, a unit, nor a prime, is said to be
composites, "The first five composite integers are 4,6,8,9, and 10.

Thes von the basis of rather simple divisibility properties the
igﬁégérs are separated into four mutually exclusive categorics. It is
th&purpose of this and the following chapter to show that the primes
are fundamental building blocks in terms of which all the composite
integers may be conveniently and uniquely represented. This pro-
gram will be initiated by studying two ideas that are very useful in
themselves and which provide the key ideas for the next chapter,
where our program will be finally achieved.

*Chapler § is a hesic chapter.
29
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5.2. Definition of a greatest common divisor. If ¢ = Ad and
b = Bd, then d is called a common divisor of a and b. '
Given the integers a and b, if there exists an intever o such that
(1} dis a common divisor of ¢ and b;
(2) every common divisor of ¢ and b is a divisor of
then d is called a greatest common divisor of @ and b, and is designated
by d = (a,). N
The student reader will Probably consider himself already
acquainted with this idea, since without much effort he can reggnize
that (15,21) = 3. Upon greater consideration he cun see(tin " his
success depends on factoring the numbers into primte * laetors:
15 = 3.5 and 21 = 3.7 and then selecting the mn;rm?L powers of
common prime factors. Tn this simple case the seleabion is casy and
(as we shall show later) the factorizations are urique and 3 is indeed
a correct greatest common divisor, The remackable thing aboul the
argument of the next section is that it in no yﬁéy depends upon actor-
ing a and b nto prime factors ( a task which may be formidable for
large numbers), and yet it proves the, existence of, and provides a
direct construction, for, a greatest commion divisor.

5.3. The Euclid algorithm

3 mfor finding a greatest comruon
divisor.. If we are given alp

air of pesitive integers ¢ and b, it is
mere%y a matter of notation to assume 0 <4 < a. By the division
algomt]rfm We may write\a = gb - , wWith0Sr<p I[p= 0, we
stop with the one equation ¢ = gp, T the more important case
where r 5 §, we Apply the division algorithm repeatedly, say k -+ 2

times, to obtgiiQ..the following Sequence of equations which is uni-
versally knownp as the Euclid alyorithm.
‘.:’s&*= g +r, b= W, r= g rs,

LR T

~J Pk—?':q.brk-_l"}‘rk, rk_1=qgc+1r,c-|—0,

€ are now in a position to disen,
problem of the cxiste
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Theorem: For any given pair of positive integers ¢ and b, a
greaiest common divisor d = (a,b)
(A) exists,
(B) is unique except for a unit factor,
(C) is such that there exist integers z and y for which
d = ax + by,
(D) is such that the integers d, @, y can be found in & ﬁﬂike
- number of steps by the Euclid algorithm.

Proof: (A) We consider the Euclid algorithm described Efb\ove.'
If r = 0, so that the algorithm consists of the one cqu‘a'ticﬁl a = qb,
it is clear that b satisfies both requirements (1) and (2) plthe definition
of & greatest common divisor, so we take ¢ = b. JE ~= 0, we shall
show that rs, the last non-zero remainder in the fgelid algorithm, is a
greatest common divisor of @ and b (in case ry =)(, we agree to define
rg = r). We must show that r; possessqs\‘éroperties (4) and (2} of
the definilion given in the preceding séelion.

Proof of (1)1 From ryy = qH.I;n’;;:it follows that ri divides rs_s.
Then from ri_s = qirp1 ~+ 'z it-follows that r; divides ry-a. And
tracing back, equation by equatibn in the algorithm, we find that r;
divides b and finally that {7: divides a. Thus ry is 2 commeon divisor
of a and b. )

K

Proof of (2): Ikt D be any common divisor of @ and . We
rearrange the fifgh equation of the Euclid algorithm to see from
r=aqa-—gb L}ﬁ:t ’D divides r. Then the rearranged second equation
r = b —g{F'shows that D divides r. And moving forward, equation
by equafie v in the algorithm, we find finally from ry = Ta-2 — ¢als-1
that Dodivides rz. Thus every common divisor of @ and b divides rs.
~Since we have shown that rx possesses properties (1) and (2), it
Tellows from the definition of d that ri = d. Hence at least one
integer d = (a,b) exists.

(B) Let d and d be two greatest common divisors of & and .
By property (2) it follows on the one hand that d = kd’ and on the
other hand that &’ = md. Then d = kmd and since d # 0, it follows
that &m = 1, hence k and m are umits. Conversely, if m is a unit
and d is a greatest common divisor of ¢ and b, then d’ = md is also
a greatest common divisor of @ and b (sec EX. 5.1).

Thus the greatest common divisor is unique only up to a unit
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factor, and —d has to be considered as equally acceptable an answer
as d. In number systems which we ghall investigale later, where still
more units are available, even greater freedom in the selection of
d = (a,b) is to be expected. The use of the adjective “grealest” is
merely a hangover from the simplest case where one considers only
positive integers.

(C) and (D) Furthermore, if r 5 0, by straightforward (even Ji\
lengthy) successive eliminations of Pi-ly Frn ..., &, r [Tom the
system of equations of the algorithm, beginning with O\

o\
Th = Tes — @yl = {rp_y — qr_oMps) — Qilres — e alyh),

etc., etc., we discover, In a finite number of steps, sui;&}}i‘e integers
% and y such that ry = gz + by. In case r = 0, thér'd = b, so we
can take ¢ = 0 and y = 1tohaved=ax+by. \¥;

. This completes the proof of the theorem. \

Before presenting an example to illustraté the theorem, we note
that if @ and b are positive and d = (agh)> then d — (—a,b) and
d = (—a,—b), because the divisors of amd —g are the same. If
& # 0, then @ = (g,0). Hence the gyrhbol (g,b) is meaninglul in
every case except (0,0) where i‘t,.ijs;’«:értainly meaningless, gince, as

wag noted at the begimming of this chapter, every integer is a divisor
of 0. : A

For the example o = 2%111 and b = 493, the Euclid algorithm may
be wrilten as follows: \\

O 4
A7403 ’ 2210 = ¢
\ [ 1972 2 =g
A\ r= 238 [ 493
P\ [ 476 14 = g
=17 | 238
R 238

\ ) | Fe = Q.
Sinee 7, = 0, wo k'no?r that r, = 17 = (2210,493). To find # and ¥
we have only to eliminate r fropy the equations, as follows:

_ 17=b—2r=b—~2(a~4b)=—~2a+96,
hence we may take 2 = —9 gp4d ¥ =
elimination it ig convenient to rotain
and to substitute actual numbers only

+9. In performing such an
letters for the r's, a, and b,
for the ¢s.
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In closing this lesson we mention that if the greatest common
divisor of @ and b is a urit, {e,b) = 1, then @ and bare said to be rel-

aln

ely prime. Thus 15 and 8 are relatively prime, although neither is

a prime,

EX.

EX.

EX.

EX.

EX.

EX.

EX.

EX.

EX.

EX.
EX.

EX.

EXERCISES

54. If d = (ab) and m is a unit, show that &’ = md is also a greatesi
common divisor of @ and b. )

52. Usec the Euclid algorithm to find d = (11951,11063) and\f,(’} find
z and y such that d = 11951z 4 11063y.

5.3, Drove that p and g are relatively prime if and only lf there exist -
integers s and £ such that 1 = ps 4 ¢i.

54, If d = (ab), e = Ad, b = Bd, prove that 4 and‘B are relatively
prime, using EX. 5.3.

5.5. If d = (ab) = ax + by, prove lhat x ar@y are relatively prime,
using EX. 5.3.

56. If (ab) = 1 and (a,c) = 1, show.bliat (a,br) = 1, using Ex. 5.0
5.7. If (a,b) = 1, show that (a’,b?) =t 1 using Ex. 5.6. :
58. If {a,b) = 1, show that {a - aﬁ,b) = 1 for any integer u.

5.9. If (ab) = 1,show that (c.g:j’-‘b a— b) = 2, or 1, according as @ and
b are of Lhe same, or oppo%itg; parity.

5.40. Prove that (ka,kb) = kla,b), for any integer k = 0.

5.11. Stale Lhe deﬁmt.mu for d = (a,b,c}, extending Lhat given in 5.2,
and prove thal d = {@be) = ((a.b)e).

5142, I (ab,c) X then a,bc are said to form a relatively prime
triple. Prove by examplcs that a relatively prime triple {a,b.c} = 1 can
occur wilh neﬁe, one, two, or Lhree of the pairs a,b or b,c or c,a being
relat:lvei}r ﬁhme puirs.

.5.43.\Gi¥e a new proof of Ex. 57 using EX. 5.3 and the hinomial

theoseﬁn



W In lhe beginning everything is self-crident,
and il is hard to sce whether one self-cvident
proposition follmos from anofher or not.
Obviousness is always the enemy lo corroci-
ness. Hence we must tnvend new wnd rren
difficall symbolism in which nolhing i
oboions. —RBERTRAND MUSSELL

CHAPTER 6°

THE FUNDAMENTAL THEOREM )
OF ARITHMETIC C

6.1. . The fundamental Iemma,..g’We lean heavily on the results
of the preceding chapter to establish the following basic lemma:

Fundamental lemma {5 prime p divides a product ab, then
p must divide at least oge'B'f the integers « or 5.

Proof:  Suppose p Elbides b, then the lemma is
pose p does not divide b; then (p,b) =1, because the only divisors
of the prime p are} +p, —p, +1, —1. Hence by the theorem of the
preceding lesson there exist integers & and y such that | = be + py.
Multiplyihg-by a, we find ¢ = abxr + apy. Since by hypothesis p
divideg.':ﬁb and since ohviousty p divides p, it follows {rom the last
equation that p divides e, which completes the proof,

\Corollary: It a prime p divides a product aya,. .
divide at least one of the factors Q1,1 .
The proof of the corollary

true. Next, sup-

.@,, then p must
e
18 left as one of the exercises.

6.2. The fundamental theorem. We are now in a position to

*Chapter 6 is a basic lesson.

32
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cstablish what i3 justly described as the fundamental theorem of the
arithmetie of ordinary integers.

The fundamental theorem of urithmetic:  Any given positive
integer n, other than 1, can be written uniquely as follows:

n = pl'¥1p2‘32_ ; _pkak

where & 15 a positive integer, where each p; is a prime integer, Where\
cach a; is a positive integer, and where 1 < p1 < ps < ... < Pz’

{It is understood that the choice of k and the p; and the gf will
vary with different n. We shall refer to this representg‘l:iou’ as
“wriling n in standard form.”) N

77
£ R

Proof: (A) We shall show that there exists at Jeast one such
representation by making an induction argumention n. Let M be
the sel of all positive integers n = 2 for which Qe theorem holds.

(I} M contains 2, {or 2 is itself a prime. 7"

(LI} Suppose (hat M contains the inte‘gérs 2.3,...,n. Then we
can show that M must conlain n + 1. Iy + 1is a prime, then the

-desired representation is already fouuds If n + 1 is composite, then
n+1=he with 1 <band 1 <.§ hence with ¢ < be and b < be.
Thus since 1 < b < n+ 1 and P < ¢ < n + 1, it [ollows that the
induction hypothesis appliesto both & and ¢. By combining the
representations for b a;kd,\c, grouping like primes together and
rearranging the combih@d"set of primes in natural order with new
labels, if necessary, (We arrive at a representation of n 41 of the
desired form. By {Ij: (II), and the principle of mathematical indue-
tion, it follows/phat M containg all positive integers n = 2.

(B) Suppdse that there exist two standard representations for a
given integer n, say :

\ : n = plalpzag‘ . ‘pk“" — (hblg'zb*- . _qmbm

whert the p: and g; are primes. and 1 < p1 < p2 < ... < p; and
T<g< gz << ... < @m 1t will be no esgential restriction to sup-
pose m = k. By the fundamental lemma and corollary of the pre-
ceding section it follows that the prime p; must divide some factor
%, and since g; is itself a prime that p; = gi; but ¢; 2 ¢, hence
P12 ¢ But similarly, the corollary shows that the prime ¢ must
divide some factor p;, and since p; is a prime, it follows that g1 = p;;
however, p; = p, bence ¢ = p.  Thus it now follows that pi = ¢
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Now suppose that & = @, then py® = ¢;% may be divided out of
the equation which we are studying to leave the following equation:

pzag_ } _pkak e qlbl_alq2b3. . .q‘mb"“.

If b; > @, the prime g, by the same arguments as before, must equal
Bome pj, J = 2; but since 1 = py < p;, j = 2, we have arrived at a
contradiction; therefore by = ;. A similar argument suffices if we
suppose initially that a; = b,.
. Repeating this same kind of argument, we are step by st@}g“l@d to
the following conclusions: p: = qo, @2 = bs; ps = o, @z =0as” .. .3
Pr = Gx @ = bi At this stage the equation being studied reduces
(in case m > k) to the following: o\ R
1 = grh . gube AN

but this is a contradiction, since a prime @Js'not a divisor of 1.
* Hence m = k, and the proof of the um'qu@g}s’of the representation

is complete. O

In many texts the fundamental thedrem is stated in this way:

“Every posilive integer, except 1,820 be represented uniquely as a

product of primes, except for ordery” By making the rather natural

agreement to collect like primégland to arrange the primes in ascend-

ing order, we have replad®d the italicized phrase by the condition

L<p<p<... <ppn

&
6.3. Critique. ‘The theorer in 6.2 is called the fundamental

theorem of arithimetic because in the further study of the theory of
numbers, we uge this anique Factorization at almost every stage of
the developfaent. The need for presenting a proof of this theorem,
howaygg Bvious the result may seem, will be apparent in our last
cha;?t,e;r where we shall describe, brictly, systems of algebraie inlegers
) i@!}r Present system of natural integeps being a special case) which
\chntain a zero, units, primes, and composite integers; yet in some of

these systers the fundamental theorem fails. In the higher algebra

courses one of the chief concerns is to provide a remedy for this

anomaly. One reason for the failure is that in some of these systems
the fundamental lemma of 6.1 is lacking; since that fundamental
lemma depended in its

ma, ¢ turn on the concept of a greatest common
divisor introduced in Ch )

! Lhapter 5, it may not be too surprising to learn
that the remedy which is applied in the higher courses is to supply a
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suttable generalization of the notion of a greatest common divisor.
Tt is truc that Zermelo has shown that the [undamental theorem of
6.2 for the natural integers can be proved by an induction argument
without using the lemma of 6.1 and without using the greatest
common divisor theorem; but we have preferred to present here the
tradilional order of proof because it does suggest in a better way
what later generalizations should be made. '
However, proceeding from Zermelo’s proof, or working back fro 0
our preof above of the fundamental theorem, we discover that begapse
of the unique factorization all the possible divisors of a number’are
immediately obtainable from the standard [orm. For if ~ by

S h

n = p1Mpe2. . PR e,
then cvery possible positive divisor s of n is obtained by considering
s = piips™. . .pi" where 0 gx;b,-\g €. .

Thus the greatest common divisor 0{3{7'0 given infegers can be
found by writing each of these hl'tegfﬂjs’ in standard form, selecting
those primes which are common fagtoré’; say P, Ps,...,P: and form-
ing d = PymPymr . Py™, where ¢ 3s the minimum exponent of P;
as one compares the exponents of P; in the two given integers.

For example, if @ = 25200= 93.32.5.7 and b = 4950 = 2.3%.5%-11,
then d = {a,b) = 2.32,5.<90. '

Theoretically this Qohs}ruction of d 1s very easy, but practically it
depends upon findigg’the standard representation, and as we shall
show in the ncxt:\chapter this assignment may be very difficult.
Hence, as wc\ﬁét\"re tried to emphasize earlier, the Euclid algorithm
for findin \{ié, in general, to be preferred, for it avoids completely
the quegtion of finding prime factors.

AN
6 4:.\; Least common maualtiple. Ifm = g2 = rb, then m is called
a'%mmon multiple of @ and b. '

If (1) m is a common multiple of @ and b; and

(2) mis a divisor of every common multiple of ¢ and &;

then m is called a least common muliiple of a and b, and is designated
by m = [a,b]. '

(These delinitions should be compared carefully with those in
9.2 in order to appreciate their “dual” nature.)

Directly from the definitions and from the notion of unique
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factorization into primes, it follows that if ¢ and b are written in
standard form, then the standard form for m is

m = 01M102M2- . QnM"
where the @'s include all prime factors of both ¢ and b and where M;

is the maximum exponent of @; as one compares the exponents ol Q;
in a and b.

For example, referring to the factorizations in the example of 43
we see that [2520,4950] = 23.32.52.7.11 = 133600. oS
- This method of constructing [«,b] depends on finding primefatdérs.
A way of avoiding this difficuity is suggested by the_identity in
“BX. 6.5. : RO

EXERCISES 'e)

o e\
EX. 6.1. Prove the corollary in 6.1, using the lﬁm}na in 6.1 and induction
on 1. e

Ex. 6.2. Using the same type of argument{a® in the proof of the lemma in
6.1, sho.w that if {(a,b) = L and @ (i!iviiies be, then ¢ must divide c.

EX. 6.3, Find the standard representalions for @ = 2625 and b = 24633.

EX. 6.4, Find m = [2625,24633]. o\

BX. 6.5. Ifd = (a,b) and m = [¢}], prove that md = ab, using the standard
forms suggested in 6.3 nd . 4.

BX. 6.6. Gi\.fe a pro.of that ed = ab, using Bx. 5.4 and Ex. 6.9.

EX. 6.7. U'smg the 1d§n\i}y given in EX. 6.5 and Ex. 6.6, describe a method
for finding m = {@3b], not depending upon {inding the prime factors of
a and b. P,

EX. 6.8, Prmf. that [a,b] = ab if and only if @ and b are relatively prime.

EX. 6.9. Showthat m = [¢,b] is unique only up to a unit factor.

EX. 6.0, %ﬁmve that [ka,kb] = k[a,b].

EX. 6:11‘.’. xtend the definition of 6.4 to the case of the least commen

o ?Eu{;:l}pl‘f m = [a,b,e] of three given integers and prove that m = [a,b,c] =
N EafCh.

}‘X. 6.12. Produce examples to show that

equal o abe. :
EX. 6.13. Show that (a,b.c) [a.b,c] cannot be greater than abe.

EX. 6_.1:’1. S}ilow that (a,b.ec,) lab,e,] = abe if and only if ab,e arc rela-
tively prime in pairs,

(ab.¢)[a,b,c] can be less than or
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CHAPTER 7 | N

PRIME AND COMPOSITE INTEGER“S”}'«

X
8 \d

Ne/

7.1, Some questions. Motivated: ¥v the fundamental theorem
discussed in the previous lesson, 1t, mnatuml for us to ask questions
like the following: N

(1) How can one prepare a Nst of prime and composite mtegers
which are <n, where 7 js & given integer?

{2} How can one deta\ﬁlme whether a given integer n is prime or
composite? 9,

(3) Are there mﬁ-irtely many distinct pl‘ll’DGS'

The answer to\the last question being ““Yes,” we then ask:

(4) Is it mssible to give a formula for the nth prime?

9) Is Jt‘ Possible to find a polynomial f(z) which will represent
only primes for all integral values of xp '

g‘}i \Ate ihcre infinitely many “prime twins,” i.e., pairs of integers,
kand k + 2, both of which are primes?

(7} Are there arbitrarily long sequences of integers, all of which
are composited

7.2, The sicve of Eratosthenes, Of ancient origin is the device
of preparing a kst of prime numbers less than a given limit by

*Chapter 7 is a basic chapter.
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writing down all the integers up to that limit and then in a systematic
way elminating all the composite integers. One such device is
ascribed to Eratosthenes (276~194 B.c.).

For example, with a limit of n = 100, we first set down a list of
the integers from 2 to 100. Recognizing that 2 is a prime, but that
all proper multiples of 2 are composite, we cross out 4,6,8,...,100.
The next number not crossed out is 3, which must be a prime for th
only possible praper factor is 2, and 3 is not a multiple of 2 elsat
would have been crossed out. Recognizing that all proper muftiples
of 3 are composite, we cross out 6,9,12,. . .,99—although Gt is not
actually necessary to cross out 6,12,18,...,96 again, since ‘they are
already crossed out, being multiples of 2. The nexfyhumber not
crossed out is 5; this number must be a prime, for if. ,it?\t;ére composite,
it would have to have as a proper factor a primeless than 5, namely,
either 2 qr 3; but since 5 is not crossed out, jtis'not a multiple of 2
or 3. Crossing out all multiples of 5, not\previously crossed out,
namely: 25,35,53,65,85,95, we find, by the same reasoning as before,
that the next number not crossed oui'miist be a prime;itis 7. The
only multiples of 7, not previously’ erossed out, are 49,77,91, and
t%lese we now cancel. Now, umless we have been analyzing the
sieve process carefully, we are due for a surprise—all the remaining
numbers which have survived the sieve are primes! The sieve
appears as follows: , .\

\\

23 45 B\NT 8 SIFI1 1213 1415 16 17 18 19 90

2L 2% 23 24 2B @527 %% 29 30 31 39 33 34 2D 26 37 38 38 40
41 4Z 43 A4 ABJB 47 43 49 30 BY 52 53 B4 53 36 87 B8 59 60

61 82 63 6483 68 67 68 89 70 71 72 73 74 73 76 77 78 19 80

B 82 '\3654 85 86 87 B8 89 98 9¥ 92 93 94 93 36 97 98 99 100

W@ are always sure to reach the end of the sieve process when we
,_haye crossed out the proper multiples of p’ where p’ is the largest
prime such that p’ < +/n. This follows because if s = b is com-
posite at-least one (and in [act usually just one) of the factors e and b
must be <+/¢; otherwise if ¢ > Vs and b > /5, we would find
8 =ab > (v/5)* = 5, an obvious contradiction. Hence if s iz not
cr?ssed out when the proper multiples of p’ (and of all the smaller
pm?cs) have been eliminated, then s must be a prime. TFor not
hayving been crossed out in this or any of the previous steps, s can
have no nonamit factor =+/n;and since s = n, s can have 11,0 norn-
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unit {factor £+/s; but as we have just demonstrated above, such an
s cannot be composile. .

Thus one answer to questions {f) and (2) has been provided, It is,
of course, not too satisfactory an answer. For example, if we let the
function =(x) indicate ithe number of positive prime integers less
than or equal to x, then our answer to (f) demands the making of
#(4/7) sicving steps and our answer to (2) demands perhaps the
making of as many as x(v/n) divisibility tests. Thus to prove thag
a number like 2% — 1 is a prime, would not be feasible by (this
method. O

In general, no really satisfactory test has been found £ ‘answer
the question (2) whether a given integer is prime or gémposite, but
in the course of this book, we will point out varieus,eriteria which
give impractical complete answers (like the above sieve process)
or incomplete practical answers. \\

Essentially by the sieve method, but alsd\with the aid of other
theorems and, in recent years, with the aidvof advanced mechanical
computers, various mathematicians haye prepared extensive tables
of primes and of factors. The tablesdl the usual handbooks will serve
for ordinary problems. For more extended numerical investigations,
the student should become acquainted with the work of D. N.
Lehmer: " _
Faclor table for ile *st fen, millions containing the smallest factor

of every number mol divisible by 2, 3, 5 and 7 between the limils 0
and 10,017,0087; Carnegie Institution of Washington Publica-
tion 105, IQ.QQ.‘

List of/prime numbers from 1 to 10,006,721, Carnegie Institu-
tion of\Washington Publication: 165, 1914.

Usefghas'they are, such tables are, of course, inadequate to handle
Pltolllliaf;hﬁ’like the one proposed above concerning

27 _ 1 = 170,141,183,460,469,231,731,667,303,715,884,105,727

for this number is considerably beyond the range of existing tables.
Yet by clever devices, Lucas was able to show in 1876 that this
- mumber (known as Myy) is indeed a prime, and until recent years it
Temained the largest number known to be a prime (the student should
compare this remark with the theorem of the next section which will
show the ezisfence of infinitely many primes).

A “too easy” arbitrarily large composite number n is provided by
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increasing zin n = 2% But the largest “genuine” composite number
(meaning a number which is known to be composite, but whose
factors are not known!) is M = 2% — 1 whose compositeness was
proved by Lehmer and Kraitchik,

7.3. The number of primes is infinite. For the theorcm used
as the title of this section and providing the answer to question (P,
many; many proofs have been given, some simple, some erudite,, We
will present three of reasonable simplicity. O D
Proof 1 using p! + 1. If we recall the definition of zb! Ysee EX.
3.7}, then it is especially easy to describe Euclid’s praof ‘that there
are Infinitely many distinct primes. For suppose that the prime p
is the largest prime. We shall show that this suppesition is false by
studying the number M = p! + 1 = (1.2:3. 2 3p) + 1. Evidently
M iz not divisible by any of the numbers 2!3\,’4,. . .,p because there 1s
a remainder 1 in each of these cascs; hende M is not divisible by any
prime < p. However, by the fundamental theorem in 6.2, M is either
(A) itself a prime or (B) is a product-of primes. In either case we see
that there must exist a prime lgirg;a'r’ than the prime p. Hence there
is no largest prime p. Hence there must be infinitely many distinet
primes, A
In the preceding proof :the student is cautioned to note the possi-
bility of either (A) or*(B). For example, 3! +1 =7, a prime; but
51+ 1 = 121, a cdmposile number. However, 121 is the square ol
11 and i1 is a pritie larger than 5, so the proof is as corroct in this
case as in theformer. In 'neither case is the prime uncovered by the
proof neuQ@fily the next prime, witness the two examples just given.
_ Prqq{‘ 3 using integers of the form 62 — 1. We can show that
Flgqre;’are infinitely many primes among the inte
fprogr'ession A:5,11,17,23,20,35, . . .. the gencral form for an infeger
of this sequence being 6z — 1. For il we suppose that P, P,,...,Ps
are the first & primes belonging to A, arranged in natural order, then
we can prove the existence of a still larger prime belonging to A.
Co?mdex_' the integer M = 6P,P,. . . p, — 1, and its stanbdard form
asin 6.2. Since M is odd and not a multiple of 3, it follows that all
the prime factors of M are of the form 6z 41 or 6z — 1, for there
are no odd pr'imes >3 of the form 6z + 3, all of these latter numbers
{except ) being obvieusly composite. However, the praduet of any

gers of the arithmetic
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number of primes of the form 6z -+ 1 is again a number of the form
6z + 1. In order for M to have the form 6x — 1, as it does, M
must have at least one prime factor p of the form 6 — 1. However,
this prime p must be larger than P, because none of Py, Ps,. .., Py
is a factor of M, since each of these when tried as a factor leaves a
remainder of —1. Hence P; is not the largest prime in A, and 4
must contain infinitely many primes. The result just given is
special case of the celebrated theorem of Dirichlet that if ¢ and\b
are given relalively prime integers, then the arithmetic progréssion
made up of all integers of the type az + b contains infinitely many
primes (see Dickson, Modern Elementary. Theory of Num:be};s)’.

Proof 3 using generalized Fermat numbers, Let¢albe any fixed
positive integer with @ = 2. Then if a® + 1 is aJrkme, it is neces-
sary, but not sufficient, that s have the form 5,22, To prove this
remark we need to observe that if ¢ is odd, Qg > 1, then a? + 1
has the non-trivial factor @ + 1 and €€+ 1 bas the non-trivial
factor ¢ + 1. Both of these results fellow by letting ¢ = 2n +1
and r = g or r = o in the identity-Which follows:

Pt ] = (A D AR L -+ )
This last relalion may be established by induction on n (see EX. 7.5).

Heuce if looking for primes of the form ¢* + 1, we need examine
only the numbers F,,, ¢ \'siﬂ""-{— 1, which we shall describe as gencral-
ized Fermat numbers, in memory of an incorrect but provoeative
conjecture of Ferfaatl, who believed in the case when ¢ = 2 that all
the numbers Fyowere primes (however, a hundred years latcr Euler
showed that’ki’= 2% 4- 1 is composite).

We shall'show, for each a, that there are infinitely many distinct
Primgsj-g{@ be found ameng the factors of the Fn, Our method is to
ShQ\fV,fhat any two members F,, and F,, of the sequence of generalized
Fegmat, nmumbers going with a fixed «, have at most a prime faclor 2
in common, for then the infinite sequence of F,, must have an infinite
number of distinct primes appearing as prime factors.

We begin by making repeated applications of the well-known
identity 22 — 1 = (z — 1)(z + 1) to obtain the following relations:
Fna2=g" —1= (@ "= DFps= (@ —1)FnoFni1=

ewer — (a -_ 1)F[)F1 . .Fm_gFm_l.

From this last result it follows readily that (Fp,F o — 2) = F.forevery
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n<m Letd=(F,F.). Since d divides F,, it lollows that 4
divides F,, — 2; but since d also divides ¥.., then d can divide
F,— 2 only ff d divides 2. If ¢ is even, each #; is odd and hence
d = 1; but if a is odd, each F; is even and hence d = 2. This com-
pletes the proof.

7.4, Distribution of the primes. All the tables and all the
known theorems indicate that the primes occur in a very irvggilar,
way within the sequence of all integers. For example, as {anas any:
tables have been extended thers always occur, now a'n‘d ’again,
“prime twins,” i.e., a pair of successive odd integersyerdand = -+ 2,
both of which are primes, such as 101 and 103, 107 and¥109, 137 and
139, etc.  But as yet no complete answer is availdble to question (6)
a8 to whether there are infinitely many prime t#ihs.

Question (7) is an easier one with a posibive'answer, for it can be
shown that there are arbitrarily long ‘quences of integers all of
which are composite. Thus if given ths integer n, we have but to
consider the n numbers running froln) m+DI+2t0r+1DI+
it + 1 to have at hand a sequence Bf 72 successive, comnposite inlegers.
Actually sequences of n coniposite numbers usually occur much
earlier in the tables; for example, there are 13 composite numbers from
114 to 126.

Many amateur mathematicians have sought formulas which would
answer question (4xand show directly what integer is the nth prime;
or which would #how the n + 1 prime, if one knew the nth prime.
Most professidgal mathematicians who have worked on this problem
say that theweight of evidence is to the effect that no such formulas
can he\f;)jmd. Perhaps the greatest progress has been made in the
studyof the function =(z), giving the number of primes less than or
egl;lfi:] to z. Of course, if the exact form of ={z) were known, the

,\P}‘G_Vlous problems could be answered at once. But the progress of
which we speak is of a difforent kind and belongs to what might be
called the. advanced theory of numbers, where analytic methods
baged on infinite series and various integrals of the caleulus have
made it possible to estimate the value of #(x) for “sufficiently large”
values of 2.*

Of a somewhat different, but st rather fruitless, nature is the

*For example, see Trygve N P
New York, Wiley, 1955?" agell, Infroduction to Number Theory, Chapter VIEL
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search for formulas, like Fermat’s incorrect one, which will yield
only primes, even if they won’t giveall the primes. The person who
first studied the function f{z) = 22 — z 4+ 41 must have been excited
as he substituted z = 1,2,...,40 to find that he obtained forty
primes.  Had he been a laboratory scientist, he might have shouled
“Fureka!” But being only a mathematician, he substituted z = 41,
and then went out for some coffec.

Of a similar exciting and then disappointing nature is the functiod >
Jlxy = 22 — 792 4 1601, . O\

In view of these examples it may be of intcrest to answer qustion
(5} in a definitely negative way and to prove that a polyt;qmia] f(x)
which is not a constant and which has integer coeflicients cannot be
prime for all intcgral values of z, and is composité for infinitely
many integral values of «. The proof demands oniyadittle [amiliarity
with the properties of polynomials. A\

Since f{x) is not a constant, |f{k)]> 1, fQ’I‘,Eome intoger k. Set
¥ = f{k) and consider f(ty 4+ k). There are several ways of showing
that f(tfy 4+ k) = yQ + f(k), where Q is‘a’ polynomial in Ly.k with
integer coefficients (see Ex. 7.9). Hence fliy + k) = yQ + 1) is
divisible by y = f(k) for all valug:sfi[‘ {. Bince f(z) is not a constant,
Jty + k) increases in absolute value for { sufficiently large; therelore,
for such sufficiently large #falues of { the complementary [actor -
€+ 1is not a unit, and héncc f(ty + k) is composite. Since &y + k
becomes arbitrarily 1511@ with {, the latter having, say, the same
sign as y, it lollows\that f(«) fails to represent just primes in an
mfinity of cases #ndin fact lor all # of the form x = fy + k when 1
i sufficiently Jarge.

R j'%XEBCISES

e374.) Show that 7(/210) = 6, listing the six primes concerned. _

EXN2. Apply the sieve process to only the interval 190 to 210 {recall that
just w(~/210) steps are required) and find all primes and xll prime Lwins
in this intervat, :

EX.7.3. Modify Euclid’s proof that therc are infinitely many primes by
supposing the kth prime to be the largest and using M = (p1p2. . . p_k) =+ 1,
where p1,pg, . . P are the first k primes, to arrive al & conlradiclion.

EX. 7.4, By a slight variation of Proof 2 in 7.3, show that there are mfinitely
Inany primes in the arithmetic progression 3,7,11,15,. .. of inlegers of
the form 42 — 1.
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7.5. By induction on n, prove that

P L = (r A DL r s — L
7.6. Prove that o® — 1 is composite if a > 2 and ¢ > 1 (sce mx. 3.2).
7.7, Prove that 2° — 1 is composile if s is composile (see vX. 3.2).
7.8. Show that there can be no prime triplets, i.c., three successive odd
integers, each a prime. '
79. If f@y=amtax+ ... + awe® with inleger cocfficients, use
Ex. 3.7 to show that f{ly + k) = y0Q + (k) where Q is a polynomiahin -
{.v.k having integer cocfficients. N o
7.10. Give u different proof of Ex. 7.9, using the division algorithm for

polynomials with y as the divisor and R, free from ¥, 48 th%;:;}cmainder;
then set y = 0 to show R = f(k).
741, Tlustrate £x. 7.9 when f(x) = 2 — 79z + 168}, $howing that
Q= ity + 2k~ 79). Withk=1,y = f(1),{= Jyshow thal f(1524) =
1523 .1447, : v

742, A sieve for odd pumbers. Considersthe set C of all numbers
CArs) = 2rs +r-+ 5, where r and s are positive inlegers. Prove that
an odd number p = 2K +1isa prithé i and only if K is not in the
set C. (For convenience the rumberd.of € may be arranged in rows and
columns; the elements of the rth row, dre then the terms of an arithmetic

N

_progression with first torm 3r 4=\ and cormmon difference 2r + 1.)
EX.

?.1’3. Using the potation l}f'EX 7.3, show that the Py, — 2 integers
tollowing M are composiLe.

o\
£ $
L W

& N/



W The essence of muthematies is its freedom.
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CHAPTER &

THE NUMBER-THEORETIC FUNCTIONS O

7(n) AND g(n) ‘

'\’;.

8.1. r(n}, the number of divisors of A2 Let us seck a function
7(n) to give the namber of poslt]v ‘mtecr(,r divisors of any given
positive integer n. As we shall d_lSCOVB‘I‘, such a function must be of a
very different character from the fulictions usually studied in algebra
or analysis, for it depends ing ritical way not only upon the value
of n, but also upon the staidard representation of n, as in 6.2, and
the standard representatien changes radically as we pass from n to
n+ 1, Hence we sha]l‘descnbe r{n), and any other function whose
range depends updxthe standard form of n, as a number- theoretic
function, the adj\t,tw(, intended to emphasize the specml nature of
the fum‘hon\
Iinis )g@l}m in standard form as
"\. ’ n = plalpzag pkak

the\_ll the posilive integer divisors of n are given, without tepetition,
by the form

d = pipa. . . p™

Whe:re for each value of i, the b; runs independently through the fol-
lowing range of values: b; = 0,1,2,.. ..,

L]
Chapter 8 iy a hasic chapter.
45
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Now, by a well-known combinatorial principle, it' follows that if
by can be chosen in a; -+ 1 ways, if by can be chosen in @z 4 1 Wayflsi
-+, and if b; can be chosen in a, + 1 ways, 'then bibe, . .. b at
together can be selected in a number of ways given by the produc
e+ D+ 1). .. (@ + 1). o .

1Hence we {ind that the number +(n) of positive integer divisors
of n is given exactly by

=@+ D@+ (a1

{This covers all cases where n > 1, see 6.2, and it is ga\é)"% con-
firm that (1) = 1.) AN

Yor example, 2520 = 28.32.5.7, hence RS

7(2520) = (3 4 12 4 DI+ 1a -{-{} = 48,
80 2520 has exactly 48 distinct positive integsr divisors.
A
8.2 o(n), the sum of the divisors_ s{ ‘. It is clejar from_ 13he
- . preceding discussion that the sum gl) of all the distl.nct positive
integer divisors of a given positiye iteger n > 1 is given by the
following product: P\

o) = (1+ pi+ p2 18V + po)

(1 + pa Dra il s I ¢ R S S Sy + pi°)

because in this produgt.each of the divisors d of n, described in the
previous section, afh

: ApPeArs once and only once as a summand, when
the product has been expanded.

(When n =45 We see directly that ¢(1) = 1)

With the\i.'a:ia of Ex. 3.2, inasmuch as each pe > 1, we find that
a(n) can-alsé be written in the following form:

Q"

O s =T ol oy
e mn—1 =1 e —1
\N"
\m\; “For example, 2520 = 23+3245+7, hence we find that
2t—-13 - FP—-17—_1
f = a5 —0 Y _ _* ——— - e = 360,
o 2520) T 551 5 -1 7o =1518:6:8=09

80 the sum of all the positive integer divisors of 2520 is exactly 9360,

8.3. Perfect numbers,
tant part in the history of
the influence of Numerolog

Number mysticism hag played an impor-
the theory of nurmbers. One vestig:‘3 of
Y is in the use of the adjectives deficient,
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perfect, and abundani to describe integers for which «{(n) < 2n,
s(n) = 2n, and o(n) > 2n, respectively.

A rather fascinating, but unfinished, chapter of the theory con-
cerns the determination of all perfect numbers: the first part concerns
the discovery of all eren perfect numbers with a creditable part by
Euclid and a doubtful portion by Mersenne; the second, uafinished
part concerns the as yet unsolved problem as to whether there are
any odd perfect numbers.

Let n = 24 be an even perfect number, ¢ = 2 and 4 odd. By
definition we must have ¢(n) = 2n or ¢(2%14) = 28A. Eince
(2*1A4) = 1, we may apply Ex. 8.2 to see that o(2FIR) =
¢(2*s(A). By the formula in 8.2, we know that 5(2”-1) =2F -1,

hence we arrive at the following condition:

(2% — Da(A) = 2*A.
Let us write ¢{A) = A 4 X, where X is the su{njof all the positive
divisors of A which are less than A. Then.ﬂ:e condition displayed
above reduces to the form (28 — 1).X =4\, This implies that X is
a divisor of A; moreover, since k = 2, W ig less than A; thus X,
which is supposed to be the sum of alt divisors of A less than A, must
include X itsell. But X = X + X mmnplies ¥ = 0, s0 A has only one
divisor X less than A3 however, “the only integers with this property
are primes; thercfore A is afi‘odd prime, X = 1, and A must have
the form 2* — 1, We have’thus arrived at Euclid’s conclusion: the
ouly possible even perfest numbers must have the form n = 2¥p
Wwhere p = 2% — 1 js ‘an odd prime.

Conversely, to{templete the argument, we must check that every
such number, nsﬁ perfect number; but this check is very easy, for
by section Qz-we find

" cr(n) = g(2¥1p) = (2¥ — 1)(p + 1) = p2* = 2n.

Tlle }‘esult just given suggests a search for all primes of the form
My 25 — 1, since each prime so discovered will provide a cor-
responding perfect number Py = 2%M;. The study of numbers of
the type M, is known as the study of Mersenne numbers after
Mersenne (1588-1648) who made a number of correct and several
incorrect statements about which ones of these numbers are com-
posite and which prime. As EX. 7.7 shows, M, is composite if k is
composite, hence the search for Mersenne primes (and for even per-
fect numbers) is narrowed to the case where & is prime. Thus far

&
~\.
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only 12 Mersenne primes are known, althongh the search has been
~ completed among all primes k< 257. The simplest cascs are as follows;
My=3,P.=6; My=7P;=28:
My =31, P; = 796; M, =127, P, = 8128.
The next Mersenne primes are M, My, My, Ma, My, My, My,
and M. Concerning the last of these we have already made some
remarks at the close of 7.2 N
The best results about odd perfect numbers are of the type that
if there are any such numbers they must have more thaa‘a’rertain
number of distinct prime factors. Imperfect though sucK gesults may
be, they are yet sufficient to indicate that if any oddgerfect numbers
~ exist they will be large numbers and not found by mere guesswork.

8.4. Multiplicative number-theoretic functions. A number-
theoretic function f(n) is defined 1o be muliiplicative if and only i
flab) = fla)f®) for all positive integers &, for which (¢,h) = 1.

For example, both 7(r) and c(nparé multiplicative, as may be
seent [rom their formulag developed gbove, see Ex. 8.2. The func-
tions f(n) = 1 and J(n) = n gredother simple examples of malti-
plicative functions, O8N '

If f(n) is multiplicative,™it, follows since (e.1) = 1, that f(e) =

fle-l) = fla)f(1) and hénce that f(1) = 1. For n > 1 we can apply
the fundamental théorem to write n in standard form as n =
Ds®ip2ta . py W}léSE the p; are distinet primes. Since the factors
pi® are relatively)prime in pairs, it follows that an expression for &

function f(hwhich is known to be multiplicative, can be found by

iuvestigqting“the value of f(p%) where p@ is a power of a prime.

Of spiecial interest is the following theorern which shows how new
mulf[iph_(:ati\re function

3 may be generated from known multiplicative
fufietions,
7

N Theorem: Tt fn)is a nultiplicative number-theoretic function,
then so also is P (n) where F(n) = Zf(d), summed over all positive
~divisors d of n. '
Proof: By definition .
Fla) = =f(d) summed over the set S of all divisors d of a,
F(b) = %f(d") summed over the set 87 of all divisors d’ of b,
Flab) = Zf(d") summed over the set 8" of all divisors d of ab.
Let S* be the set of all numbers of the form dd’ where d ranges
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over § and & over 8. The relation d"'k” = ab shows that any prime
factor of d”* must divide either @ or b, hence d” has the form d' = dd’
where d divides a and d’ divides b, Thus every number in 8" is m
§*  Conversely, every number in 8* is in 8", for from a = dk,
b= d'k, we lind ab = dd’kE’, so that dd’ is a divisor of ab. How-
ever, the sets S’ and S* are not, in general, identical, for & is defined
in such a way as to have no duplications, whereas §* may have
duplications.

Ve can show that S* has no duplications under the assumption
that {(a,b) = 1. For it is clear that (d,d") divides (e,b), hengeif
(@h) = 1, then (d,d") = 1foralldinSand alid’ in §". Consequéntly
an equality dd’ = did)’ implies since (d,di"} =1 that d divides dy.
and since (d),d’) = 1 that d divides d; hence d = dyagd d' = dy’.
Thus the factors d and ¢’ of a number of S* are uniquely determined.

By hypothesis f(n) is multiplicative; under the, assumption that
(@) = 1, we have seen that (dd) =13 copibining these remarks
wo may write fF(d') = f(dd"). Under theliypothesis that (a.b) =1,
we have idenlified the sets 8* and 8", =o 4@e may wrile

Fla)F(b) = gmgﬂdv = ;;f(c‘ld’) = ;ftd”) = Flah).

This is, of course, precisely the récjuire_ment which shows F(n) to be
multiplicative. N _
~ We have mentioned gz_})t:?ve that f(n) =1 i8 a multiplicative
fanction, 'This is eagy*{o see since flab) =1 = 1-1 = f(a)f(b) for
all a,b, including, therefore, the cases when {(a,p) = 1. By apply-
ing the theorem we know that F(n) = Zf(d) must be multiplica-
tive. Howevers3fld) = 1 4+ 1+ ... + 1 with as many summands
a8 there are ositive integral divisors of n; hence F(n) is what we
bave Pl‘e\fii;kly called r(n). By this approach we know a priori
that f(@ & multiplicative. Consequently by mvestigaling
AP = Q) +1@) + 1) + -+ @) =at]
we ‘afe able to conclude that for n = p1™pe®...pu"%
) = (g + Diee+ 1. . (e + 1).
Thig develops the [ormula for 7(r) in a way entirely independent ol
that given in 8.1. :
Similarly, we may show that f(n) = nis a multiplicative function,
for f(ab) = ab = f(a)f(h) for all @b, including the required cases
whore (g,b) = 1. It follows from the theorem that F(n) = 2f(d) =
Zdis multiplicative and we see that F(n) is what we have previously
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~ called o(n). By this approach we know a priori that ¢(#) is multi-
plicative. We therefore investigate

o(p?) = f1) +f0) +F@?) + ... +(p9
S1+p4p4... 4pr= LD

-1
and conclude that for n = p,ap,se . D,
FOR At § il S Nt | 3\
n—1 p—1 pe— 10 A

which agrees with the result established by different reasofiiflg in 8.2.

In the exercises and in later chapters we will make ‘f,"[trl'_.h(:r use of
this theorem on multiplicative functions, ’

R
EXERCISES \4 |

N
Ex. 84. Compute r(4950) and (4950),  ./0>

W

£X. 8.2. Assuming the formulas in 8.1 and\8.2, prove Lhat v(ab) = +{a)7(b)
and ofab) = o{a)a(b) whenever (a,b) =21,
Fx. 8.3. Show 7(n) is odd i and only%firi is a square,

EX. 84, Show 7(z) = ¢ has infinitely’ many solutions =z for every given
integer g > 1. Use 7.3. . A\

1x. 85, Make a table of valus¥ of o(p®) = (po+t — 1)/(p— 1) where p
is a prime and o(p%) <90 '
Ex. 86. Find all solutiotshof o(z) = 72. Use ux. 85,

EX. 8.7. Lot n be calledmaltipli-perfect if o(n) = kn, where k is an integer
with >3, Provathat n=

re 126 and n =672 are multipli-perfect nlﬂnher.s'
EX. 88. Use thddefinition in 5x 8.7 and show that n = 14,182,439,040 is
a multip]kpg!fect number. (Descartes. ) '

EX. 8.9. Find'a common property of o(81), ¢(343), a{400),

EX, 840 \\bet a pair of Positive integers A and B be called amicable if
A =4+B= (B

- Prove that 220 and 284 are amicable.
EX 824, Prove that the produci of all the positive divisors of 7 is given by
AN Compare with ex, 8.3
Ngx. 8.12. Use the theorem in 8.4 and develop a formula for ri(n} = Z7(d),
summed over the positive divisors d of n.
EX. 8.,‘138 fr;)evelop a formula for 74(n) = Z11(d), where 7;(n) is defined in
EX. 8.12.
EX. _S-M- I 0= pyoipym -P&™ i8 In standard form and if 5 is a fived
- Integer, define f(n) = &% for p > 1 gnd f(1) = 1. Prove that f(n) is mul-
tiplicative,

BX. 8.15. Develop a formula for F(n)=Z#(d) where f(n) is defined in £x, 8.14.



W If @ man's wil be wandering, lel him study
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cuapter 9°

THE BRACKET FUNCTION

9.1. DefiniLion of the bracket fung;i:c;a:i: With any real number
& we may associate a uniquely deternaingd infeger, called the “integral
part of 2 and designated [z] which may be read “bracket «,” by
requiring that [] be an integer Tor which
[z < 2] + L
For example: [14/31=4, [-7] = -7, [v10] =3,
V0] = —4, [x] = 3, [—«] = =4
- \Y; . )
Aga conseqpe\hce of the definition it follows immediately that
\\ g=[x}+ 8 with 0= ¢<L
Then t-hé’;['ol]owing properties of the bracket function may be readily
estabished.
k.l: If m is an integer, [z + m] = [=] +m.
Progf: From z=[z] + 6 0= 0<1, it follows that z +m =
(] +m + @; since [z] -+ m is an integer, B.1 must hotd.

_ B.2: [2]+[—2] =0, or —1, according as x is, or is not, an
Integer;

*Chapter 9 is a supplementary chapter, prerequisite, however, for Chapter 10..
5t
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Proof: If z is an integer, [2] = 2, and [—2] = —=, hence
l+[-z]=2—2=0. Ifzisnot an integer, then
z=[z]46,0<8<T;hence —z ~ — (@) —0=—1—-f2]+(1—-9

with 0 <1—- 8 <1 and with —1 — [x] an ioteger.  Therefore
[—2] = —1 — [2], or otherwise expressed, [x] + [—z] = —1.

B3: [x+y]z[2] + [y]

Proof: Letz = [x] + 6,0 5 <Liy=1[y]+ ﬁ'z.q £ &L
Then 2 + y = [x] + [¥] + 6 + 6, with [z] + [¥] an m{,’@quf' and.
with 0 < 6,4 ¢, <2, Either 0 < B+ 6 <1 and [3¥N] =

el +[ylsor 1< 6,4 6, < 2 and [z 4+ y] =[] + [} 1. But
in either case, B.3 holds. : ¢

X

B.4: If nis a positive integer, then [[]/n] j—:.j{:é/ﬁ].

Proof: Tet g = [Z1+6,0= 8 <1. By the division algorithm
find g and » so that [Fl=gn+r 0=, Sn'— 1. Then []/n =
¢ +r/n with ¢ an integer and with ¢ < #f0"< 1: hence [[xi/n] =4
But &/n = (gn +» T O/Mm=q+ (2 ) /n with g an integer and
with 0 < (r Hiins(n—1 + 8){n"< 1; hence [z/n] = ¢. Com-
paring these two results we fing it we have established B.4.

which are those‘jreél numbers wh,

; ich are not rational, such as /2 and
7. These coucepts are explain

ed in detail in a later chapter.
"If @ and b are p

Exer{?"%: ositive irrational numbers such that
l/a ;f-,jl)‘ =1, then the {wo series [an] and [bn] for n = 1,2,...
represent all positive integers withe !
O\ For example: It g V2 thenb =2 V2. The a-series begins

[a] =1, [2a] = 2, [34] = 4 [4a] = 5, [5a] = 7, [6a] = 8, [7a] = O,
(8a]} = 11, ote.; while the B-serjes begins with (6] =3, {2b] =6,
[36] = 10, ete., exactly complementing the ¢.list.

Proof: Since ¢ and are positive with 1/a -+ 1/p = 1, it follows
that hoth @ > 1 ang b>

1.
(A) We shall show

: that there is no repelition. of integers in the
series [an] and bnl,n =12 .
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(A.1) In the serles [ar] there is no repetition, for we have
_ [an]<an<a(n+1)-—1<[a(n+1)];
the first inequality follows since a and (therelore) an are irrational;
the second inequality follows from 1 < a. Similarly, there is no
repetition in the scries [br].
(A.2) For all positive integers n and m we can show [an] £ [bm].
For if we suppose the integer ¢ = [an] = [Bm], then
an —1<z<an or n—la<z/a<n,
bm— 1 <z<bn or m— 1/b<x/b<m N
Adding the latter inequalities of each line and nsing 1/a + 1/!3 =1,
wefindn 4+ m — 1 < & < n -+ m, so that the integer « licg belween
two successive integers, which is an obvious contradiction. ™
(B) Next we can show that no integer & is omitted i“IRbdth sequences
[an] and [bm]. For if we suppose « to be such an iiteger, then there

must exist integers n and m such that RN

an < [an] +1=2 = Ta(n -+ 1)] —-"(K\a(n—kl) —~1
or n<z/e<n+1 A V4,

bm < [bm]+1§m§[b(m-jl;j’1‘):-l<b(m+1) -1
or m < x/b gﬁ;—}—l — 1/b.

Adding the latter inequalities,of each line and using 1/¢ +1/6 = 1,
wefindn +m <z <nt+idtl, which is a contradiction.
Establishing (A) amk@)’completes the proof of the exercise.

9.3. 7(n) and_the bracket function. The following theorem
shows a conneg{i(:)ﬁ between +(n) and the bracket function.

Theore \For any positive integer n, the following equation holds:
M@ + ... o) =1+ /2] + ... + [#/n]
P oaft The proof makes use of the interesting device of counting
1 two different ways the aumber of solutions in positive integers d

of the set of equations ’
de=1,dz = 2,de =3, vey dz =1,

First, consider the set of equations in the order just given. Cer-
teinly in the equation dx = k, each factor of k leads to a suitable d,
and k has exactly r(k) factors. As k= 1,2,...,n, we find that the
total number of solutions d agrees with the left side of the equation
which we are trying to establish.
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Secondly, consider the equations with = 1,2,...,n, and with &
restricted to the range 1 £ kX < n. Then the equations and cor-
responding solutions may be grouped as follows:

dl=rkik=12...,1{n/1); d=12,.. [n/1];
d2=kik=24,.2[n/2; d=12,.. In/2];
dB3=kk=36,...3[n/3]; d=12,...,[n/3];

dn=kk=n= nln/m); d=1= [n/n]. ~
From this point of view we find that the total number of SOIUt]QB\S d
agrees with the right side of the initial equation, ' A0
For example, let us consider n = 10; « O
(D +#(2) + ... 4 £(10) = N

1+2+2+3+2+4+2+4+3{4m2
[10/1] + [10/2] + ... -+ [10/10] =
10+a+3+2+2+1+1+{+1+1-—27

EXERCISES .~\ v

 { 3

Ex. 8.4. For all real 2 from —2 1o +2 draw the graphs of {a) ¥ = [z];
My =[]+ [~2]; () y = [=]% «(‘D y= [“32]

EX. 9.2, INustrate 9.2 when g4 = \/ 3.

wx. 9.3. Ilustrate 9,3 when 1 = 30,

EX. 8.4, Prove that for any _positive integer ¢ and any real

[e] + [z + 1/9] - [& [\B+ gl + .. a4 (g — 1)/q] = [go]
(Hint: let x = [:t] 02 9< 1 and consider s = [¢6] < ¢f <

s+ 1)
mx. 9.5. Use 9.8 to\estabhsh that
ot (n) =1+ Z([n/d] = I(n — 1)/d]) -
where lhe"&lmmatmn runsfromd=1tod=n— 1.

EX. 9.6. re that

) = [Vn] = VA= T+ 23((n/d] — [(n — 1)/d])
\ wherc the summation runs from d = 1 o ¢ — [vn—1].
EX. 8.7. Whereas [] represents the “largest integer less than or equal to
«,” show that [# + 1/2] is a “pearest integer to .7

EX. 9.8. Prove that f(z) = | ~ {2+ 21| has the property f{z -+ m) = f(x)
- for every integer m.

EX. 9.9. For values of & = 0,1,2, draw the graphq of
¥y =| 2%y — [2% 4+ 4]|

fromz=0tox =2 Then draw the graph ofy o+ y1 + yu
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ciiarter 10°

THE FUNCTION E(pn) S

_ R
10.1. Definition and evaluation of .Etp,n). By E{p,n) we
mean the exponent of the prime p in. the standard form of nl.

For example, E(2,4) = 3, E(3.405%= 1, and E(5,4) = 0, because
41=1.2.3.4 = 24 = 2% Buftwhat we desire is a formula for
determining wilh some rapidity the value, for example, of E(3,101),
where it is not practical tabegin by actually writing 1011in standard

{

form,
We shall show, uging the bracket function of Chapter 9, that

10.0) By @/p] + n/p) + /E) 4o [n/p*,

where :~\1. pk é n < pk-H_'

Proof s’ UThe integer (n/p} shows the number of integers =n
whighiare multiples of p and contribute at Jeast 1 1o E(p',n). Then
£./5% shows the number of ntegers <n which are multiples of p*;

and the fact that all numbers of this type aré included in the previous
contribute at least

set is properly counted since these yultiples of p*

2 to E{p,n) and they are here counted at least twice, once in {n/pl

and again in [n/p?]. Similarty, [n /p%] shows the number of integers
<n which are multiples of p?, and the fact that all multiples of this

& . . . .
Chapter 10 is a supplementary chapter, reguiring previous reading in Chapters

4 and 9,
55
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type are included in both the previous sets is properly counted for
they each contribute at least 3 to E(p,n) and they are here counted
at least three times, once in {n/p], again in [n/p%], and again in
[n/p*]. Finally, [n/p*‘] shows the number of integers =n which
ure multiples of p¥, and that each of these integers contributes k to
E{p,n) is properly counted, for cach of these integers is a member of
all the previous sets and is counted exactly & times: once in [n; 738
again in {n/p%,..., and again in [n/p*]. No further increments™to
E(p,n) can oceur since n < pt+, 3o the proof of formula (1\0‘9') is
complete,

For purposes of computation we can improve (0. ﬂ bw{ usmg B.4
of 9.1. Let us set n; = [r/p*]. Then

rees = [0/p] = [(0/p9/p}C"
and by B.4 we may write \'
= [In/p s:|/j4_0] [n: /P]
From (10.1) we have E(p, ) = n; 4 na» + —]— ny, hence with the
aid of the present, observations we way” wrlte
{(16.2) E(pn) = [n/p] + [m/p]*+ [ns/p] + ... + [nes/p]

where it is understood that, aIthough by deﬁmtlon n; = [n/p*, we
shall here use n, = [n/p] sl niy; = [n:/p].
For example, using (;&0}) we may write

E(3,101) = [101}&}-1— [101/9] +- [101/27] - 101/81] =
o\, - 33411 +3 41 = 48,
or using (10, 2) 'Wb may write, recursively,
B(10LG= 101/3] + [33/3] + [11/3] + [3/3] = |
N B+11+341 =148,

10~2x E(p,n) and representation of n to the base p. I n is
*vr;tten in the base p as in Chapter 4, 80y

n= (az. . alaﬂ)p = ay -+ ap 4 asp? -+ | ..app®,

it is evident, since each a; satisfies 0 < a; < p, that the computation
of the n,, defined in the Previous section, can be explicitly indicated,
as io]]ows
=[n/p] =a, ‘ap+ ..+ axp s
ne = [ni/p] = ay + @GP+ .. agptr
ol = Groy + @i g = ay,
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However, these computations can be avoided because of the
following relations:
n o= mp -+ ao; fu = Nep 613 N2 = TP + a2
il = TPt Gr1) e = Gk
for if these equations are added together we find, employing (10.2),
that
n 4+ E(pn) = pEpn) + o+ @+ ...t
¥ we solve this last equation for E{p,n} we obtain the following
sseful formula, due to Legendre: N
{10.3) E(pn) = {(n — (ao +ar+ ... +a))/(p — 1). KQ
For example: since (101, = 81 + 2.9 + 2 = (10202)s, (We find
with the aid of (10.3) that ~\*
E(3,101) = (101 — 2+ 0 +2+0+1)/B -1 =06/2 = 48.
"N

10.3. The eguation E(p.n) = m. In this béetion we find the
sofutions n, if any exist, of the equation E(p;p)'= m, where p is a
given prime and m a given integer. NV

To this end we begin by considering “the increment

AE(pn) = E(p,n)m-é“E(p,n - 1.

Lemma: 1f 1 = (ax...cagpodnd g5 0, then AE(pm) = 0:
but if gy=a1 = ... = Em3 = 0., while a,# 0, then Al{pn) = s.

(In other words the increfnent AE(p,n) is the same as the number of
terminal zeros in the e@:e‘sentation of n to the base p.)

Proof: The proof, follows almost at once from the definition of
E(pn). For if .ad\“;é"{}, s that 7 is not a multiple of p, then nl con-
taing no more-faetors p than does (» — Dl Butifg=a=_...=
@ = 0,.then’ n = a.p* + - .- + axpt, with @, # 0, i3 divisible b
P, but ¥y no higher power of p, hence n! contains exactly s more

factordlp than does (n — D!
\ Lorollary 1: As n increases, E(p,n) is nop-decreasing.
Proof: ‘The Lemma shows that AE(p,n) is never negative.

Corollary 2: I there is one solution n to the equation E(pn) =
m, then there are exactly p solutions, namely,
ni=n—a+ihi=0L..r— 1.

Proof: By the lemma AE(p,;ni) = 0 for i=12....p— 1 be
cause for this range of i we find n; has a non-zero “units digit”’; hence
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. E(png =E(p,n)y =m,fori =0,1,....p — 1. By the same reason-
ing AE(p.ng) > 0 and AE(p,n;) > 0; hence by Corollary 1 there are
no other values of n satisfying E{p,n) = m.

The fact that solutions occur in sets of p consecutive integers is
also obvious from (£0.3) for in the numerator the a;in n cancels wilh
the a; of the sum of the ““digits” leaving the expression for E{p,n}
actually independent of the value of aq.

Corollary 3: There exist values of m for which E(p,n) = in has
no solution. )

2\, A

~ Proof: Since Corollary 1 shows E(p,n) to be non-decréasing and
since there exist integers, say n* with @y = @ = . . . -—r‘&gq = Qand
. # 0 with s > 1, for which the lemma shows ABUpn®™) = s, it 1s
clear thai each such saltus provides s — 1 valuey of m, namely,
m; = E{p,n*) - i, for i = 1,2,.. s — 1, for whieh E{p,n) = m; has
no solution. N

The first such exceptional m for which %clutions are lacking is
m = p, which arises by taking n* =(0) p=p* with s = 2 and
computing m = E(p,n*) — 1 as in the.proof of Corollary 3.

But, to return to the original problem, we must provide a way of
deciding, when m is a given idfeger, whether there is a solution of
E(p,n} = m; and if there is.a Shlution, a way of finding it (of course,
Corollary 2, will then pro¥ide p solutions). In the Yight of the Lemma

and Corollaries the f{@vﬁng rule is a natural and effective answer to
these problems. '

N\

Rule to soly@E(p,n) = m: Given the integer m, we consider
_ A= p—=1m41) = (a. . .a@),.
Either E(p,8)' = m and p solutions can be found as in Corollary 2.
Or E(ﬁ}, < m and we can form, in succession, the integers
’j:; ml=:c—[_-p—a.3,m2=:c1+p, e By = 2+ p
2Ed Y 5; is the number of terminal zeros in @; Written to the base b
\We can compute, in succession, the values of '
_ Ep,21), Bp,zs), ..., E(pz)
with the aid of the {ormula .
' Epx) =E(px) 8+ s+ ... 4+ Sh
We continue this process (it will never be necessary to proceed beyond
Zipa) until either E(p,2;) = m and p solutions can be found, or uafil

E(pwiy) <m <E(p,z;) in which cage there is no solution to
E(pvn) =m.
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(Note, however, in the eventuality of no solution, that z; is still of
some interest since x; is the smallest integer such that p™ will divide -
«;! even though the exponent of p in ;1 is larger than m.)

Proof of the rule:  From (10.3) since ax # 0 we see that Eip,m) <
n/(p — 1); hence E(pa) <m + 1 and E(p,2) £ m. The z; of the
Rule are selected, according to the Lemma, as the succession of
integers following z for which AE(p,x;) > 05 and the formula for
E(p,z;) also follows directly from the Lemma. To show that ther\
process described in the rute will terminate in at most k 4 1 steps,
we define X = x -+ k(p — 1) and note, since 0 = a0 < P,§ that
X< gy =+ (k+1p— @ Since ¢ < pttoand k(p <) =
kp £ p*, we find X < 2p* or N

X = pi + (p — DF +p .+ pcEL:
Therefore using (10.3) we can see that QO
B0 = ((m+1 -+ k-1 — @+ EFLE=D)/E-D
: "~\—_;m_#1X(p'_-1)1
but since E(p,X) is an integer, we cqncfl}de that E(p,X) z m.

Finally, combining these remarks il Corollary 1, we have

m = E(st) = E(p,$k+1)- "" N

Example 1: p=5, m= 100,600. By the rule we compute
z = 4(100001) = 400004. 'Then as in 6.3 we write « to the base 5,

the Tesult boing as follows: & ="(100300004)s. By (10.3) we compute
" E{p,x) = (400004 — (1 3:3— 4)) /4 = 99999. Sincey=T+P— &=
245 — 4 =g+ 1< (100300010)s has s = 1, we find E(p,ay) =
E(p,z) + 1 = m; e the proposed problem E(5,n) = 100000 has 5
solutions: z, = 400003, and 2; + 1, { = 1,2.3,4

Example 2,.0p = 3, m = 1,000,000. We compute & = 2(1000001)
= 2000002+(10202121111011), and then find
N\ E(p,) = (2000002 — 14)/2 = 999994,

al
e

In §ufgéé'ssion we find
o = ¢+ 2 = (10202121111020);, $1 = 1, E(p,ar) = 999995;

), =
T =z + 3 = (10202121111100)s, 82 = 2, E(p,za) = 999997 ;
s = @5 + 3 = (10202121111110), 5 =1, E(p,cs) = 999998;
2y = @, + 3 = (10202121111120), s: = 1, E(p,xs) = 999999;

2 = 24 + 3 = (10202121111200)s, 85 = 2, E(p.2s) = 1000001
Hence there is no solution to the equation E(p,n) = m. But the
smallost integer [V such that N1 is divisible by p™ i8 N =2 =
z 414 = 2000016.




EX.

EX.
EX.
EX.

EX.
EX.

EX.

EX.
EX.

EX.

D e
h
\:

» THE FUNCTION E{nn) Chapler 10
EXERCISES
10.14. Use (10.3) and compute E(10,10202) with all the given numbers

and all computations to the base 3. Check the result wilh the example
following (10.3).

10.2. Compute E(5,101) by each of (10.1), (10.2), (10.3). A~
10.3. Show that E(2,n) = E(5,n) for all n.

10.4. Use px. 10.2 and 5x. 10.3 to answer the question: *Tn how{maby
zeros does 1011 end?” o\ 3

£\
10.5. Compute E(3,1001) by (10.2) and (10.3). A
10.6. Use B.3 of 9.1 and ({0.1) to prove that (a +BVel! is an
integer. Compare with ex. 3.7. €

20.7. Use rx. 10.6 to prove that the product of b csn\secut.ive positive
integers is divisible by b1 \
10.8. Define, recursively: T, =1, and T}-:%\pT,—_i +1 for i> 1
Then use (10.3) aud 5x. 2.2 to show, as did-Hempner, that
(10.4) Ep.n) = aiTi 4 aeTe Y, + 0.T.
10.9. Referring to the definitions in ¥x."10.8 show that
Ty—i={(p— )T 1+ Too .. + Tosip) + pTocss
_ JONT i=23,.. .81
10.10. By repealed use of the Wivision algorithm show that if T: =
M < Ty, then there existd dn integer j, 1 £ j < k, such that m can be
written uniguely in the ;B:)ﬁsn
m = Liérg+ BeaTea+ ... + BT,
where the By, Brn, .., By, B, are integers such that
0By < i B; < p,i=b— ,...j+10< B < p.

. 10.11.  Using'the notation of EX. 10.40 and (£0.%), show that if B; < p,

then E(g{ir.:)\é m is solved by n= Bp/ + By p + .. 4+ Biph.
o

Using CQII lary 3 and £x. 0.9, show that if B; = p, then E(p,n) = m
has r;o'\m) ution, (Kempner.)



W Now this establishment of eorrespondence
between bwo eggregales and invesligation of
the propositions thal are carried over by the
correspondence may be called the central idea
of modern malkemalics, —W. K. CEIFFORD

cuaptEr 11

O
GROUPS OF TRANSFORMATIONS; O
MATRICES, AND DETERMINANTS
S

11.1. Transformations. Given a8éb S of elements, £,y,. . ., then
a fransformation T of S is a rule, ﬁﬂiich makes correspond to each
z of § a unique element z' of Sywhich shall be written as follows:
%' = oT and read “z’ is theJstransform of 2.” S will be called the
domain of T; the set S ofrall T-transforms will be called the range of
T and will ordinarily bea proper subset of S.

For example, let § be the set of all integers and let T be defined by
2 = gT. Then i a transformation of S, for the square of an
integer & is asmhique integer #% The range S’ of T is certainky a
proper subséi)of S, since 2, for example, is in 5, but not in §".

Two tfaniformations T and U of S will be defined to be equal,
“Tit,te{i " — U, if and only if 2T =2U for every ¢ in S. In other
words, T = U if and only if T and U transform S in exactly the
siwte way.

The produet TU of two trapsformations T and UJ of S is a trans-

formation of S defined by
(11.1) 2(TU) = (aTYU for every & of 8.

*Chapter 11 is in many respects a hasic chapter, introducing concepts which are
used in some later chapters. However, if the Teader is already acqu:_zmted mt_h
determi.nants, especially Cramer’s rule and multiplication of determninants, this
chapter may be put on the supplementary lst.

61
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Since T is assumed to be a transformation of S, =7 is a uniquely
determined element of S; and then since U is a transformation of §
and z7 is in .S, we see that (z7)U is a uniquely detcrmined element
of § for every z of S, so TU as defined by (1.4) is indesd a trans-
“formation of S.

For exaruple, let S be the set of all integers and let T and ¥/ be
defined by «* = 2T and z + 3 = /. By (11.1) we find z(TU), =,
@TYU = (@)U = 2* 4 3; however, since 2(UT) =(@NT = (2 +3)T ="
@+3=22+6x+9, we find that 2(TU) = z(UT) 0;{1}’*« for
T = —1, nol for all z of S and therefore TU =« UT. « \ _

The example just given illustrates that the operation offorming the
product of two transformations of a set S is nol, ingeieral, a com-
mutlative operation, This negative observation léwds more interest
to the following positive result. O
Q.1 The operation of forming the prod}:@t\of transformations is
associative: thus if U,V,W are any trangidrmations of a set S, then

(UNW = UVW).

Proof: The proof stems directly ftom the definition of the equality
of two transformations and scvgrél’épp]ications, indicated by appro-
priate parentheses, of the definjtion ({7.7):
s((UVIW) = ((UV)W =NNW = @DY(YW) = «(U(VI).
This holds for every z Sy hence (U)W = U(VW).

The most obvious tra&aformation of all is the one which transforms
each element of S intoitself; it is indica ted by the letter I and called

the identity transfo\rmation; its defining property is that z = «I for
every z of §,.f >

Q.2; zﬁﬁ-"every transformation T of §, IT = 7' = T7.

Progfe” By the defining property of I and by (14.4) we find
:c('l‘lf,‘}= (xD)T = 2T = @) = «(T1), for every x of S, hence
IT=1T =TF, o

A transformation T of § will be said to have an inverse U if and only
if there exists a transformation U7 of § such that TU=UT =1L

For example, if § is the set of all integers and % is a fixed integer,
then the transformation T defined by x - & = &7 has an inverse U
defined by 2 — & = g7, fop by (11.9) we find &(TU) = (VU =

(? —f:-k)U= C+k)—bh=p= «l for every z in S, hence TU = 1.
Similarly, we may show U7 = I
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Q.3: Ifa transformation 7' of 8 has an inverse U/, then U is
unigque-

Proof: Suppose T has two inverses Uand V,sothat TU = UT =
| =TV =V¥T. Then by Q.1 and Q.2 we find that U = Ul =
UIV) = (UTYV = IV = V.

A transformation T of S will be said to be one-to-one if &' = T
has one and only one solution z for any assigned element 5’ of S.
Tn other words, the range 8’ of T contains every element of 8 withouds,
repetition. .

For example, if S is the set of all integers and T is defined- by
2 = T, then T is not one-to-one, for there is no solution 2= 2T
within the set S. For another example, if § is the set of all'veal num-
bers and T is defined by of — z = «T, then T is notdng-to-one, for
although S contains a solution © for every equation)®’ = zT, there
are some casce where there is more than one sohition: for example,
0 = 2T has three solutions: @ = —1, 0, +1¢ i

Q.4: If Tis a transformation of S, fhew T has an inverse if and
only if T is one-to-one. N\

Proof: (AT is one-to-one, e may define U7 by saying that
#U = ¢ if and only if &' = oL sthen U i5 a transformation of S,
because since T is one-to-one we know there is one and only one £ for
every £ in 8; and furt,h’éh’nore we have both z(TU) = el =
@)U = ¢ = 41 for_every = in S, hence TU=I; and =" (UT) =
(@ NT = «T = o/ &'l for every & in & =&, hence UT = I
Thus ¥ is an inwetde of T, and by Q.3, Uis the inverse of T.

(B) It T hed an inverse U so that TU = UT = I, then for any
2 of S, weiud = = o' U is a solution of o = T, since 2T = (&' INT =
{UT) &%’ = «'; and there is only one solution, for if oT =T,
then.owe find '

N = ol = 2(TU) = U = U = yTU) =yl =y
Refice T is one-to-one. This completes the proof of Q.4

N

1L2. Groups of transformations. A set G of one-fo-one trans-
formations T,U,... of a set S is gatd to form a group if G has the
following properties:

H.i: closure: if 7 and U are in G, then TU is n G;

H.2: identity: I'isinG;

H.3: inverses: if 7 is in G. then the inverse of TisinG.
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¥or example, let S be the set of all integers and let G be the set
of all transformations of the type T defined by = + k = 2T, where

k is a fixed integer; then we can show that G is a group by demon-
 strating each of the properties H.1, H.2, H.3. But first we should
check that the transformations 7% are one-to-one; however, T} is
preciscly the example given in 11.1 of a transformation with an
inverse, and hence by Q.4, T} is one-to-one. Moreover, the inverse
of T, was shown to be T_; and since G contains all transformatiofis
of this type, it follows that G contains T_, for every inleger & “and
hence H.3 is satisfied. H.1 is satisfied for if T and T, areNn’G,
we can show that T%T,, is in G; for \ &

.
7 %4

oTiTw) = @TOTw = (@ + BT =(z + k) + pf >
¢ + (kM) = 2Thrm

for every 2 in 8, and hence Tilm = Tyym; singe(3 contains all travs-
formations of this type, it follows that G co(tmns 2T = Thyn for
all infegers & and m. Fivally, H.2 is Satisfied, for [ =T, since
ol =2=2+0 = o, for every z in §¢ and since G contains all
transformations of this type, G containg ] = To. Thus G is a group,
known as the “group of all tranglations” of S or as the “additive

*

group” of §S. N\

_The student who contin{zés into higher courses in algebra will
discover that one of the(Most important mathematical systems is
that of a group, of which the transformation groups discussed here
are the primitive andyaccording to a celebrated theorem of Cayley,
the essential exandples. In the remainder of this chapter and in the

next chapter wevwill show how these notions apply rather directly
1o the theQ}:r"ﬁf numbers.

11'3" ,f];:inear transformations, matrices, and determinants.
ider the set S, of all ordered pairs (z,¥) of integers 2.y, defining

(Q?;J”“ = (u,ﬂ) if a]ld Only if *r=n a_‘nd y =g ThiS get 15‘2 is Ga]_led
the “set of all lattice points of 2-space.”

A transformation T of Sy defined by
(14.2) (ax + by,ex + dy) = (a,y)T

W}E,re a,b,c,a;f' are ﬁ’xe:i integers, is called a linear fransformation of Sa.
we Wflbe @'y = @,y)' = (z,9)T, then the equations o' =
@ by, ¥ = e +dy give another way of describing T. Tt is
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evident that T is completely determined by specifying the values of
ab,c,d and ordering them correctly, hence a convenient representa-
tion for T is to write

a8 C
(11.3) T = ( )
b d

where the 2-by-2 square array on the right is called a 2-by-2 matriz
and a,b,c,d are called the elemenis of the matrix. The first coluxn®
of T determines 2’ and the second, y’; the first row of T shoygs\the
coefficients of = and the second, the coefficients of ¥. o\

Let U be a linear transformation of S: defined by\ U=
(@x + by, + diy) and represented, according to (113‘), by the
matrix AN\

[2 2
v~ ( ) N
b did L©

M.1: I T and U are linear transfoi'inétions of Sy, then T = U if
andonlyif a = a, b=b, ¢ = e1, =" dh (In other words, T=U
if and only if the matrices reprefpnting T and U have their corre-
sponding elements equal.)

Proof: By deﬁnition...”ﬁ= 7 if and only if (2T = (e, U for
every (z,y) in Ss. Insgé&tiﬁular we may take (2,y) = (1,0) to see that
(i) = LOYT = 1,0 = (ants)
iiand only if q%ial, e = e; and we may take (r,y) = (0,1} to sce

thal O
;\',3 Bbd) = QT = QU = (bud)
if and qnlyiT b = by, d = d.

M\i’» Tf T and U are linear transformations of S, then TUis a
lingar transformation of S and the matrix representing T'U 1s
}iven by

aay 4 ¢by  acy e
(11.%) TU = ( >
blfh + dbl 561 -|" ddl

Proof: By definition (11.1) we find
@) TU) = (e,y)THU = {az + by.cx -+ dnlJ
= ({az + by)ay + {cx + dy)bu(az + by)eu(ex + dy)dy)
= ({aay + cb)z + (bas -+ dby)y,(aey + edu)e + (hes + ddn)y)
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Since a,b,,d,a1,1,¢1,d, are integers, so are ag; + eby,bay + dby,ae; - cody,
bey -+ ddy, and T is seen to have the correct form to be a linear
transformation, and by (1.3) the matrix corresponding to TU is
precisely that given in (£1.4).

At first it would seem difficult to memorize (11.4}, but there is an
easy device called “matric multiplication” or “row-by-column multi-
plication” which is defined purposely in such a way as to give exactly
the result (11.4). O

Rule for matric multiplication: To find the element in_the- ith
row and jth column of the matrix T, find the sum of the prodiets of

" corresponding elements of the ith row of 7 and the Jth eolimn of U.
Thus we find G

B c\N/a ¢ aay '+‘ Cbl acs —k%dl
o (008
b d bl d1 ba1 + dbl ,é(!f + ddl

For example, to find the clement in.fhe first row and second
column of T'U, take the first row of T, /namely: (a.¢) and the sccond
column of U, namely: (e, d), multigly together their first elements
to obtain ac; and multiply their second elements to obtain ed,, and
finally take the sum of these praducts to obtain ac, -I- ed,.

Such a complicated rule for finding the product of two matrices,
if presented by itself, might\seem highly artificial; but in view of the
preceding discussion o ; products of translormations, applied in par-
ticular to products, oPMinear transformations, the rule has quite a
satisfactory motixgtion, resulting in a product-preserving one-to-one
correspondence’bhetween linear transformations and matrices.

Just as the’product of transformations is, in general, not a com-
mutati\rp\éupération, 80 the product of matrices might be expected

not, infgeneral, to be commutative, To illustrate this remark we
compute, by (11.4), the following products:

COC-COCC)-C

By M.1 we see that these results are not equal.
I:Iowever, the following result is irue, and by our previous work is
easily established, '

- ML3:  Multiplication of matrices is an associative operation.
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Proof: Each matrix corresponds to a linear transformation and
each product of iwo matrices corresponds to the product of the
corresponding linear transformations, as we bave previously seen in
(11.3), (11.5), 11.4)". However, by Q.1 in 11.1, the product of linear
. transformations is an associative operation; hence the multiplication
of matrices is also an associative operation.

Of course, this theorem can also be proved by direct computation
from the product rule (11 4, but the proof here given is much more’\
elegani—particularly if the theory of matrices is extended, as if, 05111

{ N

be, to other than 2-by-2 matrices. 8

M.4: The identity transformation is a linear transforgni;ﬁbn and
the corresponding matrix is given by K?,

(1 0 '"’:.
I- ) ,
0V 2

Proof: By definition (z,y)] = (%¥): henge
2 =z=Llg+ 0y ysy=02+ L-y,
so that  is secn to be a linear transfptmation, and by (11.3) the proper
matrix is the one displayed aboye: )
Since the following relation FI = 7 = IT holds by Q.2 for all
linear transformations, it follows by (11.3), (11.4), (41.4)" that the
same relation holds f0\t§africes.

M.5: A linear .t.raiﬂsformation T of S, represented by the matrix
(1.3}, has an ipwerée it and only if ad — be is a unit, namely 1 or
—1; and the ifiyerse transformation is a linear transformation.

£\

Proof ;'(\kbﬁsider the relations =’ = ax + & y' =cx+dy. By
eliminagion we find
(U1.8) (ad — bo)x = e’ — by, (ad = Do)y = —ex’ + oy’
Let)t = ad — be. By Q.4 of 11.1, we know that T has an inverse if
and only if 7T is one-to-one, Le., if and only if (27.¥") = (z,y)T has a
unigue solution (x,y) for every (z',y") of Sa Examining (11.5), we
See that in order that there be a unigae solution, allowing fractions,
it is necessary and sufficient that £ 7 0. But in order for every pair
of integers &',y to determing & unigue pair of integers .y, We CALl
show tha it js necessary and sufficient that t=4+1lor—L

TF £ doos not, divide a, or if ¢ does not divide b, thea if iD (11.5) we
substitute o’ = 0, y’ = 1, we find fe = —b, or fy = a; hence in the

L4
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one case, ¥ cannot be an infeger, or in the other case, x cannot be an
integer. Similarly, if ¢ does not divide ¢ or d, we may substitute
' =1,y = 0in (14.5) to obtain fz = d,ly = —¢;so that in one case,
Y cannot be an integer, or in the other case, 2 cannot be an integer,
Thus if' T is one-by-one, { must divide abe.d  Hence £ must divide
ad — be =1, say u = t; then fu = 1, so that { must be a unit and
either { = +1lart = —1. ~

Conversely, if f = +1, then £2 = +1, hence from (£1.5) we find
(11.6) & = {dy’ — thy', = —tlea’ + lay'. ¢\
From (71.6) it is clear that every pair of integers «',y"(Teads to a
unique pair of integers ,y; hence T is one-to-one and bés an inverse,
Moreover, the form of (11.6) is such that the inversgyof T is seen to
be a linear transformation U/ represented by a matrix

d —fe )
(117) U= ( \.);\\'
—th @

Definition: 1 T is the matrix giverl in ({1.3), ther the function
d(T) = ad — be is called the deternrinant of T,

In terms of this definition, M5 may be reworded as follows. A
linear transformation 7' of S*has an inverse &7 if and only if the
matrix representing Thqﬁ{a unit determinant ¢ = d(7T) = +1. More-

over, d(U) = (td)({a) {‘..C—tb)(—tc) = ab — be) = t = d(T).

M.6: The st & of all linear transformations T of S, such that
dT) = +1, ford &”group, called the “lattice group.”

Proof: Wetnust show that G has properties H.1, .2, H,3. H.1
is satisﬁ d Because if Ty and T, are linear transformations of S; with
4(T) £ ¥1and d (Te) = 41, then on the one hand we know by M.2
thaE I is a linear trausformation; and on the other hand we know
y 'h}{ VL5 that 7} has an inverse U so that T\Uy = UT, = I, and that

L: has an inverse U 8o that T:Us = UsTy = I, whence we can show
that U, i3 the inverse of T17;, for using Q.1 or M.3, we have

(TlTE)(U2U1) = TI(T2(U2U1)) = Tl((T2U2) Uy =
.. T1(IU1) = T1U1 = I
and similarly, (GUYTT) = I but since T\T: has an inverse, it
follows by M.5 that dT\Ty) = +1. Since G includes afl linear

transformations of .S; of unit determinant, if follows that G satisfies
property H.1.
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1.2 is satisfied because we noled in M.4 that [ is a linear trans-
formation and we noie now that d(J) = 1:1 —0-0= 1, so that G
contains .

1.3 is satisfied because we noted in M.5 that the inverse Jofa
linear transformation T is a linear translormation: and we noted in
the paragraph preceding M.6 that d(I)) = d(T); since G jncludes all
lincar transformations of unit determinaut, it follows that ¢ includes

. This completes the proof of M.6. \
M.7: If T and U are linear transformations of Se, then d(T¥),=
dMyd(L). “\

Proof: Using the notation of M. 2, we find by direct cg)ﬁq)utation,
omitting a few terms which cancel, that ¢ s,
HTU) = (aas + cby)(bey + ddi) — (ba, -+ dbilge. - cd)
= aadd; + ebiber — bawedy — dbaci\
= (ad - bc)(a1d1 - blcl) = d(l\.r)‘ ).

L4, Significance of the lattice graup for Diophantine prob-
lems. We have already indicated Ja\Chapter 1, that if in a given
problem we restrict our attention'te those golutions which are inte-
gers, then we can agree 10 deforibe this restriction by calling our
problem a Diophandine problem.

If a Diophaniine prohléﬁl involves two variables 2 and ¥, then a
very powerful simplifing device may often be to replace the two
given variables by &litably chosen linear combinations with integer
coefficients of twoinew variables " and ¥, s0 chosen that every pair
of integer valitey of the first two variables will determine & unique
pair of irgb{gf:‘f values for the two new variables, and conversely. In
other ,W,Oﬁls we would like to use a linear transformalion that is
completely reversible in inlegers. _
{\But such a transformation is a Yinear transformation of S; and
aetording to M.5, it is of necessity one belonging te the lattice group
discussed in M.6, ie., a linear transformation of poit determinant
and hence possessing an inverse. Moreover from the closure prop-
erty of the lattice group, the product of any number of these trana-
formations, that is to say the application in convenient sequences of
any number of these simplifying transformations, is equal to another
of tho same kind, that is to say, can be accomplished by a single such
transformation.
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We observe from &x, 5.3 that if we are given @ and b, then ¢ and d
can be found so that ed — be = +1, if and only if @ and & are rela-
tively prime. But this still leaves a good deal of freedom, as we shall
show in the next chapter; and from the many corresponding linear
transformations that are, as we have shown in M.5, complelely reversi-
ble in inlegers, we can frequently find one or more that will greatly
simplify the form of a Diophantine problem, without losing or ga Ening
even one extra solution. This technique is well illustrated in Chap-
ter 13. O\
7NN “

Ny

EXERCISES

Ex. 1.1, Show that the rule T defined byzT = z(zx & 1.)5(2‘is a transforma-
tion of the set § of all integers, but that T daes Adt Have an inverse.

Bx. 11.2. If $is the set of all integers and T and Lare defined by o7 = ||
and gl = & -+ 2, find and compare TU an ur.

Ex. 143, W T,,Te,...,T, are transformatiohd: of a group G and U,
..U, are the corresponding inverses,: prove by induction that the
inverse of T\ Ty...T, is U,... UsUyX(the inverse of a product iz the
product of the inverses in reverse order).

EX. 114, A group G is called commutatioe if TiT3 = TyT, for every pair of
transformations T} and Ty in 6, Show that the translalion group in

11.2 iff commutative, Shéyn that the lattice group in 11.3 is nob com-
mutative. ¢ J

EX. 11.5. Given the mét?ﬁés

P 1 2 3 1
()
\:\" -3 2 2 =5
find ? UT, T = TT, and the determinanis of the five matrices.
EX. 11 \6‘:,‘ rove M.3 by direct, computation.
Ei‘ :1{.’7. A]t].mugh, in general, for malrices TU = UT, show thal, always,
}x vfor delerminants dTU) = d(UT).

11.8. Fol‘ mat-rices T B.nd U as i]:l M 2 f ¥ i
. . . (l teger g make l
: w : an Of any 1n Mg B

et q
: ' b+ b d4-d, b g
Showthatd(qI—T')zq2—(a+d) i
Show that 7% — a4+ 7T+ i = U-§_+ -
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‘gx. 11.9 Show that the four linear transformations of S: corresponding to
the following matrices, form a group, the “ cyclic group of order 47

1 4 o1 —1 0 0 —1
() =l ) w- ) - )
01 —1 0 0o - 1 0

gx 11.10. Show that the four linear transformations of Sa corresponding to
the [ollowing matrices, form a group, the *‘ Four-group'’:

1 0 —1 0 ~1 0 /1 O
I: )! B=( )‘ G= )? D= "'« Y
01 0 1 0 - 0,51

gx. 44.11. Using M.7, give a different proof that the lattice grgui;i/of M.6
hag closure. ; PN\ 3 '

wx. 14.42. Show that the set G of oll linear transformations T of 52 with
d(T) = +1 is a group, the “ Jirect’” latlice group: \/

Ex. 1143, For every fixed pair of integers &m define ' iranslation Tim of
S2 by the following rule: (@y)Tim = (¢ Jebg m). Show that the
et G of «ll translations of Szis a commp;d’éi,a' group. :

QN
AN
\'\“"
A »
7% SN/
2N/
O
x:\“
. ”\ W
N
R\
R\
AN
\’\ o/



Y Whether he drew much or lilile from the
work of his predecessors, if is cerlain thal the
ARITHMETICA of Diophanifus has evercised o
profound influence on the development of

number theory. —H. D, CARMICHAEL
*
cHAPTER 19
"\
O\
DIOPHANTINE EQUATIONS O

.

OF THE FIRST DEG&:EE

12.1.  The equation ax 4 by =%." The problem which we pro-
pose here is that of finding all pairs of integers 2,y which satisfy the
equation Ny

{(12.1) Lax + by = n,

where a,b,n are given imtegers.

Beg:ause_ we Testrich, our attention to infeger solutions we shall
describe the problém as a Diophanline problem. (However, this is a
modern agreemé} since Diophantus would have sought all fractional
solut.inns.) ’ibmetimes such a problem is called a problem in inde-
terminale anblysis because when there are not as many equations as
u.nkn'?\ ‘there may be infinitely many solutions, and when a solu-
tron ds, ot unigue, it is frequently described as indeterminate.

N
”'~,}Th;301;ex.n.= The equation ez + by = n has @ solution in integers,
ay #%y" il and ouly if ¢ = (a,b) divides n. In case there is a solu-
- tion, every solution is given by
(12.2) T=2¥*+ B, y=gy*— AL

Wherc‘f{ and B are defined bya=Adand b = Bd, and ¢ is an arbi-
trary mteger. '

*Chapter 12 is a basic chapter.

72
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. Proof: (A) If there exist integers x*,v* such that az* + by* = n,
then every common divisor of @ and b, including d, is a divisor of “the
1eft side of the equation and hence a divisor of n.

(B) Conversely, suppose d = (a,b) is a divisor of n, say n = Nd.
By the Luclid algorithm as in 5.3 we can find integers X and Y such
that aX + bY = d. Then z* = XN, y* = YN provides one sokhu-
tion of the equation (f2.1), because

n = Nd = a(NX) + 6(NY) = az™ -+ by*.

(C) Let &*,¥* be one solution, so that ax* -+ by* = n. Then'ds
shown in (A) we must have n = Nd where d = (a,b) and a F'4d,
b=DBd, As in (B) we know d = aX +bY for properly~c¢hosen
integers X and Y; hence dividing by d, we find 1 =A‘X 3+ BY.
Therefore as in EX. 5.3, we have (4,B) = 1. Let zy heyany solution
of (12.1) so that ax + by = n. By subtraction apd\réarrangement
* we find a(z — z*) = b(y* — y). If we substitite w= Ad, b = Bd,
and cancel d, we find that Az — &*) = B(y*529)- Since A divides
Bly* — y) but (A,B) = 1, it follows hy.Jx 6.2 that A divides
y* — y, say Al = y* — y, theny = y* >4t With this agreement,
we discover upon substitution and caniceling A, that 2 — «* = Bi, or
z=g* 4+ Bf. Thus we have founii' that every possible solution of
(412.1) can be written in the formy(12.2).

(D) Finally, we need to.shoi# that every pair of integers of the
form (12.2) is a solution of422.1), but this is easily verified by direct
substitution, since for \ery value of ¢t we find
axr + by = alz* +Bi) ;%(y* — A =az*+ by* 4 AdBt — BdAl=n.

Corollary 1 : Fhe basic solution, denoted by a*y*in (12.2), may
be chosen ]Jl,‘llgt one way, say X*, Y%, guch that 0 £ X* < \B|.

P "Uoffs’%hce all solutions of (12.1) are given by (12.2), we need
show goly that there is one and just one value of the integral param-
etef b such that 0 £ X* = ¢* +Bt < |B|. Using fractions and
Supposing that B > 0, we find that

—z*/Bst<(Bl—a%)/B=1- z*/B,
h‘?“CE 1is the unique integer in the interval from —2*/Bto1l - a*/B.
Similarly, when B < 0, { is the unique integer satisfying —:.,'_'*/B =
£> -1~ g%/B.

Corollary 2: All solutions of ax + by = n in posilive integers
.y, i t}]erc are any, can be fou[][i by Solviﬂg @ > 0‘! Y > 0, Slmul—

\
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taneously, with z,y given by (2.9), to find those values of ¢ which
are suitable,

¥ we assume that ¢ and b are both positive, there will be at most a
finite number of solutions of azx + by = n in positive integers, so
this restriction makes the problem a little more interesting and is
considered the “cricket” requirement for most problems of his kind.

Ezample: Find the smallest positive integer m such 1hat
5332 + 299y = 10000 + m

hag a solution in integers, and for this value of m find ho\\"v;‘lt\!an)’
solutions the equation has in positive integers. g )

We begin by the Euclid algorithm to find d — (a,b) wh Bre @ = 533,

b = 299, vealizing that this work should be preseqefd to help find
T*y*,. QO

Q

1 : \
-— A \J
- 299 | 533 o\‘;.\
299 1
24299 W
234 o3
65,1234
W M19s 1
im-’{ 39 | 65
\ 1»s 1
\ 26 ’ 39
".\¢¢.u 26 2
A\ 13 | 26
:..\;, 26

0

E:siQeé‘d = 13 we must find the smallest positive vé[ue of m such
%E‘Ebn = 10000 + m is divisibie by 13, for this is the implication of

R theorem. Since 10000 769-13 + 3, the smallest suitable value
18m = 10. Then n = 10010,

From the calculations of the algorithm we find
d=13 =30 — 96 — (234 — 3-65) — (65 — 39}
= 234 — 4651 (934 — 3.65) = 2.234 _ 7.65

= 20234 —T(b — 234) = 9.234 — 7h = 9(q — b) — 7h = 9a — 16,
hence X = 9, y = _ 14, | '
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Sinoe @ = 533 = 41d, b = 299 = 23d, n = 10010-= T70d, wehave 3

4 =41, B = 23, N = 770. Therefore the complete solution may be
hased on the particular solution
% = NX = 6930, y*= NY = —12320,
and would appear as follows:
5 = 6930 + 23f, ¥ = —12320 — 414

However, Corollary 1 suggests that the solution may be put in as
much more convenient form. We therefore solve 0 < 6930 4 23¢ < 23,
fort = —301, and compute X* =7, ¥* = 21. With this new basic
solution the complete solution is as follows: . O

z=74+23 y=21—4l RO
(there is no harm in retaining { as the gymbol for thgéai‘simetex:, if we
agree from this point on to use the new, more éenvenient solutiomn).

Finally, to detcrmine the golutions in posj.tt{e‘ integers, we must
consider simullancously the inequalities . *

=T 4+23 >0, y=2L< >0
These incqualities simplify, if we use ffxactions, to the form
—7/23 ShX 21/415
8o that one and only one quitable infeger value of 1, namely, t = 0,
can be found. Thus thenly solution of 533z + 299y = 10010 in
positive integers is i\? vy = 21, .

12.2, Computdtion of X,Y so that d = (a,b) = X - bY.
Since the solutien of (12.1) has been shown in the preceding zection
to depen&"pbn finding X,Y so that d = (ab) = aX + bY, it may
be desipgble, both for theoretical and computational purposes, o
_haVQ.H:3nlt3cha1lical scheme for performing eliminations from the
gqfations of the Fuclid algorithm.

NJoward this ond, we reconsider the Tuckid algorithm and after
selting r_, = a and r_y = b, We Write the following equations:

(12.3) Piz = gitiay T i=012.. .4

where 0 <rf << ... <n<n<fplElel

and where rq_y = gprs, S0 that d =Tz = (a,b) ag in 5.3.

Theorem: If z; and y; are defined tobe a solution of
(12.4) (—1)ir = dwe — by, for —12iSh
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where the r; are determined by the Euclid algorithm (72.3), then
solutions &:,y: may be entered, recursively, in the following chart:

¢ ¢n @1 e qr
x x'_.l el | PN £
kg ¥-1 Yo n e Y Q)

by remembering 2, = 0, Ya=1 2o=1, yo = g and t!{eh..bom~
puting, in succession, the values of \

(f25) Tip = i1 + Tafert, Y1 = Yi1 + ¥iffizr, 5 :_:"Lzs- - .,k.

In particnlar, when i = k, X = (—1)*zxand ¥ = ..(féi) kthy, provide
a solution of d = ry = (a,b) = aX 4- b7, ’

Proof: When { = —1, we have (—1)—1?";,\1\'= —b = a(0) — b(1)
sothat ;=0 and y.; = 1 are solutiorgs':a (12.4).

When ¢ = 0, we have (=1 = po'Sa(l) — bgy so that @y =1
. and yy = gy are solutions of (12.4) .35 .

To establish (£2.5) we may.{ise an incomplete induction on i
with { running from 1 to &. ~fj"
(D When i =1, we hak®d (—1)tr = —p, = qre— b or —n =
Qi(@ — bgo} — b, so that & = ¢, ¥1 = 1 -+ qog are solutions of (12.4).
These solutions ma¥. be rewritten as =z 1+ 2 and 1 =
¥4+ yoqin agreetient with (42.5).

(IT) Suppospasthe induction hypothesis that (£2.5) provides cor-
rect solutiq}lé‘of {(12.4) for values of ; = 12,...,5, wherej <k — 1.
Then st@ih‘g’ from (12.3) and using the induction bypothesis we

.

may wiite
».ft‘%'zu Tl = @iy = {{a2j — by; ) + ginfax; — by} (-1
\I‘hén
(DM = (e + 2,00 — by, + ¥ idivt)
8o that we find (12.4) satisfied when we choose

Lot = T 4 83, Yia = Yo + yigim
but these arc exactly the solutions specified by (£2.5) when i = j 4 L.
From () and (II) it follows that (12.5) gives correct, solutions of
12.5) for § = 12, . .k completing the proof of the theorem.
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For the example given in 12.1 the computations of this theorom
would appear as (ollows:

¢! 1ol

i 0 1 1 & 3 5

16

~

—
—
3
-1
k=

N\
N

For example: ys = y1 + yofs = 2 1 70 =9% ¢\

Tn a later chapter we shall find that the recursion formulgts\(i'Q.S)
are fundamental computational devices in the study of @outinued
{ractions. 74 “

12.3. Other algorithms. In the discussion of ‘the preceding sec-
tions we have supposed that a “st.andard”thclid ajgorithm has
been used, ie., an algorithm in which {He)remainders are “least
positive” remainders. 1amé has shownithat the number of divisions
in such a standard algorithm will not exceed five times the number of
digits in the smaller number b (with computations in the base 10).

But there is no compulsion 1o Jise least positive remainders. Thus
fao=gh4r 0<r< b, e also have the possibility of using
a=(q+ )b+, whadp'|=b—r satisfes 0 < |7} < b I one,
say r*, of r and | 7’| isthe smaller, thena second step of the algorithm,
b=qur* +r, 0 éLr1T< * would seem to have the possibility of a
smaller remainddéc than in the standard algorithm and hence the
discovery in fewer steps of d = (a.b). An algorithm which at each
step uses that one of the remainders which is smallest in absolute
value has\been shown by Kronecker to be at least as short ag any
other(@lgorithm (and often, as examples show, there is considerable
géin over the standard algorithm in the use of this “least absolute
value” algorithm). Further discussion of these matters may be
found in the book by Uspensky and Heaslet listed in 1.3.

Even if some Euclid algorithm other than the standard one s
used, a list of the successive quotients can still be used in (12.5) to
find X,Y solving d = X -+ bY, for there was nothing about the
derivation of those formulas to require positive remainders. But, of
course, different algorithms may lead 1o different solutions X, Y.
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For example, consider the following algorithm:

2
299 | 533
598  —5
—65 | 299
325 3
—26 | —65 ~
—178 .
13. '\..}

'\
"Then using (12.5) with ¢, = 2, i = =5, ¢ = 3, we find >

a
S D)

R N e
0 1 ¥
1| +2

~3 RN

&
¥

PR
hence we may take X = —14, Y = 252:’Inasmttt:ll as —14 =9 — 23,
25 = —16 + 41, this solution is s¢en to be compatible, in the light
of (12.9), with the solution X. =9, v = —16 previously obtained.
Still another computational® de\}ice may be suggested, based essen-
tially on the least absoclutesvalue algorithm. To avoid trivial cascs
suppose that b does net\divide @ and that 0 < b < la|. By the
division algorithin cm\ﬁpute
(1) AN a—gh=r 0<r<b:
(2) CEM+T Db = —r, 0<r =bh—r<b.
Let D = (8> From (1) and (2) it is olear that d (a,b) divides
both randrl hence d divides D, Butb=r+randa=qgh+r=
(g -+ 1\)%'{‘- ', 80 it is clear that D = {r,) divides both a and b,
hen(:é;.‘ D divides 4. Therefore D = +4. Thus the problem of
M{inziing d = {a,b) may be replaced by the problem of finding & = (r,7)»
\w,here both 0 Sr<b<la| and 0 < < b < {a| so that smaller
humbers are involved, Perhaps by inspection d as well as s and { can
be found so0 that d = g — &', Then if we add s times ({) to ¢ times
(2} we have .
- @ G At — (sq+1(g + 1)) = d,
sothat X = s -f ¥V = —{s+1)g — t solves aX +bY = d.
It the numbers r and 1 are net sufliciently small to provide obvious
so]ut:on; of d,sf, the process can be repeated beginning with r and .
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The process will terminate as usual in a finite number of steps,
because of the decreasing non-negative character of the numbers
involved, with the discovery of a trivial case where one member of
the pair is 0 and the other is d.

In practice there is no need to memorize the formulas for X and Y.
For example, to compute d = (533,299) we proceed step by step as
indicated by the arrows:

(1) 533 — 1-299 = 231 t_’ (1) 234—3:63 =39 }_) but here,

(@) 533 — 2-299 = —63)  (2) 234—4-65 = —26} * obviowsly ®,

@) ;9-533— 16-205 = 13 { (3) 2-234— 765 =13 _ 139 — 26 =13 = (39,26),
X=9Y=-16 s =2,8=1 § =L E =N

I

.

EXERCISES O

\,

ex. 9.4, Show that 213z -+ 441y = 10002 has solution®. " integers but
pone where both z and y are positive Integers. \

£x. 19.9. Show that if az + by = n has any soluti ns\m integers we may
assume the problem reduced to the form Ax ~I—By % Nwhere (4,8) =1
and B > 0. OO

fn the following {hree exercises find & = (3713,1343) and find one solution

XY of d = 3713X 1 1343Y: o0

EX. 12.3. Use the “‘standard” algoritlﬁ[i ‘and (12.5).

EX. 12.4. Use the “least absolate.valie’” algorithm and (12.5).

EX, 12.5. Use the (1),(2),(3) method at the end of 12.3. '

Ex. 12.6. Obtain a formula foe.all solutions of the equation d=(3713,1343)
= 3713X + 1343Y.+,

BX. 19.7. Consider ap.d by = c where a and b are fixed positive integers
such that (ab)2=Q! If ¢ is a positive integer and K(c) denotes the
number of solGkions of the equation in positive integers z,y, and if s,f is
any SOlHtiKil:}?f' bt — as = 1, show that

.'\'\ K(C) = [ic/a] - [33/'51 - E(C),
wherg'®B(c) = 1 or 0 according as ¢ is or is not a multiple of a, and [x] is
Ah€ Bracket-function of Chapter 9. (P. Barlow, 1811.)

EXNI28.  With the notation of Ex. 2.7, if T is a given positive inleger,
show that all integers ¢ such that K(c) = T must be in the interval from
L(T) = (T — Dab+a+ b to UT) = (T+ Dab and that both L(T)
and U(T) are values of ¢ which satisfy K{c)= T. (A.D.Wheeler, 1860.}

EX. 12.9. Using the notation of the preceding two exercises let N(T) be the
number of values of ¢ such that K= T. Prove that N(T) i inde-
pendent of T, if T is a posilive integer- :

BX. 12.40. Using wx. 42.8, show that the values of ¢ sach that K(¢) =T

are consecutive only when ¢ = 1 or b = 1.
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MORE DIOPHANTINE EQUATIONS,

OF THE FIRST DEGREE
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13.1. The equation ax 4 by:-F ¢z =n. The problem of this
section is to find all triples ofSiitegers #,v,z, if there are any, which
will satisfy the equation

4s.n (o +ly 4 ez =n,

where a.b.e,n are given‘integers.

It is very easy ({0 prove that (£3.1) has a solution in integers if
and only if d2da.b,c) is a divisor of n, for we can parallel every
s.tep of partsj{g}j and (B) of the proof in 12.1. But it is not quite 80
simple Jﬁ;ﬁ"hd formulas which will give every solution.

We. esort to the device discussed in 11.4 settingy = AY + BZ
and 25='CY + DZ, where the integers 4,B,C,D are at our disposal,
exeept that in the light of ML5 of 11.3, we insist that AD — BC = +1,

\s0 that the transformation ig completely reversible in integers. Upen
substituting for y and z in (13.1) we obtain
(13.2) ot + (bA +cC)Y + (bB 4 eD)Z = n.
It is our intention g choose B and D in such a way that (B,D) =1
- and .that (6B + ¢D) = 0, so that the equation (73.2) will reduce to
one involving only fwo unknouns, ¢ and Y, which we can solve. com-

*Chapter 13 is a supplementary chapter.

80
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pletely as in 12.1: and adding any value of Z, we will have all solutions
2, Y. Z of (13.2); then since (B,DY = 1, we will be able to find 4 and G
g0 that AD — BC =1, and our transformation will therefore be com-
pletely reversible in integers and we will be able to pass back to all
solutions v,z of (13.1).

The delails in this program are a8 follows: let (b} = k, then
b= Rkandc = Sk, with (R,S) = 1. HwetakeB = Sand D = —~R,
then (B,D) = 1, and B +¢D = REB -+ SkD = RkS — SkR = 0 as
desited. By inspection or by the Euclid algorithm or its modificas
tions as suggested in 12,2 and 12.3, we then determine A and (w0
that AD — BC = +1. Next we solve the depressed equation™ K
(13.3) ar 4+ (BA +cCYY =n ' AN\ ]
by the method of 12.1 obtaining and Y as functions ofthie integral
parameter £ Finally we take 7 as an arbitrary jotcaral parameter
and solve for

s
R

v = AY +BZ, z=CY D

It our final answer z involves the paramej;éi‘}, while y and z involve
hoth the parameters { and Z. The presg:ﬁcé of two arbitrary param-
cters in the answer is not unexpected;fff \we consider that the original

equation is doubly indeterminate, 0

13.2. The example of Customer Jones. Manor Mouse Jones
was given $103 by his w'{i'c Mo exactly cover the cost, including 3%
sales tax, of some iterns}t, @ $7; some items B, @ $3; and some items
€. @ $15. Alas, that-poor Jones! When he got £ the store he could
only recall the aiﬁes of the items and that he was to get at least one
of each. Find the probability, if Jones spent ail his money for certain
“}lmbe'fs ?&Fﬁﬂs A, B, C, and paid the tax, that he would get exactly
his wifgl§ drder.

§tfi1§i§ed of inessentials, the Jones problem is that of solving the
Biophantine equation _

b3y 415 =100, a=7 b=3 ¢=15 n = 100,
for Fhe number of solutions in positive integers.
. Since (a,h,¢) = 1 which divides 7, the problem has golutions in
integers.  Since (be) = 3 = k, we find B =5, D = ~1 and by in-
spection choose A4 = 1, € = 0, so that AD —BC=—L Since
bA 4 ¢C = 3, we find the depressed equation like (13.3) to be

7z + 3Y = 100.
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Since 7(1) + 3(—2) = 1, a basic solution z* = 100, Y* = —200 s
easily found; then the general solution is
x=100+3t, Y= -—200— 7
but this is needlessly complicated, so we use { = 7 — 33 to write
x=143T, Y=31-1T.
Then from y =AY + BZ, : =CY + DZ, we have the complete
solution of the original equation given by
- z=1+43T, y=3—-17T+5Z, z= 2. N
We can check our work by direct substitution: \
TQ +37) + 331 — T +52) -+ 15(— Z) = 100, for Al ahd Z.
Finally, to find all the solutions in positive integers wp must study
the inequalities & >> 0, ¥ >0, z > 0, requiring thesedtoshold simul-
taneously; furthermore, the parameters 7 and Z ust be Hmited to
infeger values. First we find T 2 0, 31 + 52 & =0,Z < 0,and
then from 0 > Z > 31/3, we conclude that g,-—— —1, =2, =3, —4,
—3, or —6. _ D
When Z = —1, 0 < 7T < 26 linits 7 to be 0,1,2,3.
When Z = =2, 0 77 < 21 Linits T to be 0,1,2.
When Z = —3, 6 = 77 < 16%mits 7 to be 0,1.2,
When Z = —4, ¢ = 7T <0M limits T to be 0,1.
When Z = —5, ;0 < T8 6 limits T to be 0.
When Z = —6 0 <497 < 1 limits T to be 0. :
Thus there are fourteen solutions in positive integers. Hence
(assuming Jones to¢bk Something of a mathematician and able to
compute this figuse} the required probability is 1/14, one success
out of fourteen.\‘poSsibiLities. Jones had better return to his spouse
for written in{opmation!
~ Asan gxample of one of the solutions referred to above, we may
take %%"—2, T =2 then 5 = T,¥y =17, 2=2, and we check that
DS +152) = 49 4 21 430 = 100,
N\ .
Miﬁ:& One equation j

n four or more unknowns. It is reason-
ably clear that the pr

_ ccedure explained in 13.1 will depress a Dio-
Phﬁﬂtm‘? equation of the first degree involving, say, four variables
to one involving only three variables and then the procedure in
13.1 will apply directly to complete the solution.

For example, let us congider the equation
Me +- 6y + 302 + 90w = 200.

Since (14,6,30,90) .= 2 which divides 200, there are solutions in
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integers {see EX. 13.5). In fact, the equation might as well be re-
placed immediately by the equivalent equation
Tz + 3y + 152 + 45w = 100.

Then the Lransformation z = —_2Z 4+ 3W, w=Z— W, has a
determinant — 1 and depresses the equation to '
Te + 3y + 15Z = 100.

Avaiting ourselves of the complete solution to the latter equation,
as found in the preceding section, we have in terms of integral param={
eters U, V, W, a complete solution of the given equation, expressed.
as follows: ‘ P ~
r=143U, y=31-— 045V, z= oV +-3W, w =—-*:V— Ww.
Il we desive only positive solutlons we are led to the following in-
equalities: y "‘\ )
0<TU < 3L+ 5V; —2V/3<W< -V 36= V-1
for which there are only four solutions: \\ !
Ve 4 U=0o0r, W=13 V-—,—~t—.5,U=—-0,W=4;
Ve —6, U= 0,0=5
(z,v,z) = (1L1L,1,1)3 (4,4,11); (1,6,2.1); (LL3.L-

13.4. Sysiems of Diophan.ti‘ﬁi:’ cquations Sf the first degree.
K a system of two (or p:u)fe) Diophantine equations of the firgt
degree must be solved,the-plan is to obtain the complete solution m
integers (if any suckPsollition exists) of one of these equations, and
then to substitutelthis solution into the second equation to obtain
a mew second pguation involving the parameters of the solution of
1.;hc first equétion. Inasmuch as the parameters must take on only
mtegor Y@%ﬁs, a complete solution of this new second equation
represehifs a complete solution of the system. (More eguations can
ba‘hﬁ?\‘dled by further successive substitutions.) :
NIt should be noted that a given Diophantine system may be inde-
terminate (having solutions involving on¢ OT more parameters)s
determinate (having one and only one solution), or jnconsistent
(having no solution in integers).

~ To one who is familiar with the various elimination procedures used
in the theory of equations which reduce a system of m linear equa-
' tions in n unknowns, m < n, to equations in . — M 4 1 unknowes,
the procedure for Diophantine equations may secmt familiar, but
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awkward. But it will be recognized as a procedure which at every
step collects together every possible solution in integers,  If one -
were interested in fractional solutions, say, this method would
actually work (for the parameters could then be allowed to be frac-
tions), but would be needlessty complicated.

For an example, let us consider the Diophantine system

Tz + 3y + 15z = 100, )
* 45y 4 3z=120. \
As in 13.2 the complete solution of the first equation is O\
E=1438T, y=31 7T 4+57, 2= —Z: "
and if we substitute these results in the second equatictt, we find
that the integers T and Z must satisfy w3
16T — 11Z = 18. Y

Since 16(—2) — 11(—3) = 1, this new equatien is solved com-
pletely by T'= —34 +1lm, Z = —54 4~ lém; or as a matter of
convenience we may set m = M -- 3 and«Sbtain the answer

- T'=-34+11M, Z =—~} -+ 16M.
Returning to the variables of the original system, we find the com-
plete solution of the system in inlegdis to be a one-parameter solution,
given as follows: o

2= —8+433M, 222 43M, ;=6 — 161

We shall want 1o returi™o this type of problem again after the

notion of congruences‘haé been introduced, for the theory of con-

iuences will be found € simplify many of the procedures explained
ove. \

&
AXERCISES
"\1.

X Bf‘{‘md the comiplete solution in inlegers of 3z + 7y - 10z = 102
apd show that there are Jusl twenty solutions in posilive integers.

EXeZ32. Find the complete solution in integers of the system:

\™ 33€+7y—]—10z=102, 2z 4 3y + 4z = 46:

solutions in positive integers.

EX. 13.3. Reconsider the. problem of Customer Jones, in 13.2, supposing
the prices were A4 @ $13, B @ $7, C@ $18.

X, 13.4. .Using the notation of 13.1, show that the coefficient of ¥ in
(13.3) is either +kor —p,

EX. 13.5. Prove by induction on & = 2 that

T -2 2 R My g,
has a solulion in Inlegers it and only if d = {@1,q9,. . .,a) is a divisor of 7.
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gx. 13.6. IFarooster is worth. 5 coins, if a hen is worth 3 coins, and if three
chicks are worlh 1 coin, how many roosters, hens, chicks, 100 in all and
ot Ieast some of each kind, will be worth 100 coins. (The Chinese
problem of *One Hundred Fowls.”)

x. 43.7.  Show that the number of solulions in positive inlegers of

g4 2y Jz=n

is given by 1 + {n{n — 6)/12], where the brackets indicate the bracket-
function of Chapter 9.
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P In mathematics, as in other fields, to find

oneself lost in wonder al some manifestation

is frequently the holf of @ new diseovery.
~—P. G. L. DIRICHLET

CHAPTER 14° ~

PYTHAGOREAN TRIPLETS

14.1. The Diophantine equatior, P +¥? = 2% As an intro-
duction to the subject of quadratie Diophantine equations it is
natural to try fo find the complete ‘solution in integers of the Pytha-
gorean equation #? - y* = z2, for, as every student of geometry and
trigonometry knows, the variables ,y,z can be interpreted as the
gides and hypotenuse.o%‘a right triangle, and it is particularly con-
venient for “nice” problems or for the drawing of a right angle to
have a fund of whelehumber sotutions such as the well known 3.4.5
and 5,12,13. Bat“6ur object here is a bit more profound—we wish
to find formy\l‘:s?'s exhibiting all integral solutions of the equation.

To begh'with we will obscrve that if x,¥,2 is an integral solution of
2+ ¥y and if (tyz) =d, £ =Xd, y= Yd, z=Zd, then
P ,—!-\':Y* =7 with (X,Y,7) = 1. Conversely, if (x,y,z) = 1 and

Y = 22, then for any integer k, the integers X = zk, Y = vk,

= zk satisfy the relation X? + ¥ = 22, [¢ we describe a solution
f‘“‘_ which (z,y,)) =1 as a “primitive triplet” and a solution for
Wh}Ch (.y,2) = d > 1 as an “imprimitive triplet,” then the situation
whach we h'ave just investigated may be described as follows:

Every primitive triplet generates a family of imprimitive tripleis;
and conversely, every imprimitive triplet may be obtained from a
— T

& = . . . .
Section 14.1 is a basic section, while section 14.2 is of a supplementary nature.

a6 -
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properly chosen primitive triplet. Hence to find all solutions in
integers of the Pythagorean equation it will suffice to find all primalive
golutions.

In the following discussion we ghall need two lemmas:

L1: Given (ab) = 1, then {(a%b% =1 for all positive integers
sand L. .

Proof: Given (a,b) = 1, we know that there exist integers 2 and ¥y
40 that ex - by = L. Then there also exist ntegers X and Y so
that ¢*X 4 b'Y = 1. For we have (ax + by =1L and by BE¥,
27 we know that ez + by)*+* can be written as the sum of AT
terms each involving @ as a factor and of s terms each involving b*
as a factor. But a*X +bY =1 implies (a®h%) = 1, a8 fwéé. to be
proved. (Sce also EX. 5.3 and Bx. 5.7.) AN\

L.2: The square of an even number is a multiple ot 4; the square
of an odd number is one more than a multiple O3,

Proof: (A) (2k)? = 4R )

(B) (2k 4+ 1)? = 4k - 4k + 1 = k(1) + 1. Sinee cither k
or k + 1 is even it follows that (2R 42 ’= 8m T+ 1,

" We shall begin by assuming thaiithe equation @ -+ ¥ =2 does
have gome primitive solutions for which (z.,2) = 1 and we shall

seek to describe these solutions more completely, For convenience -
we have divided the argufient into eight aumbered steps as follows:.

(1) Not only musty(@ysz) = 1, but also we must have (z,y) =1,

(@, =1, (v,2) = JorFor example, suppose (z,y) = 4. Thea from ; '

2 4 2 = 22, it follows that ¢F divides 2. Ifpisa prime factor of d,
then by the F@u}i&mental Lemma of 6.1, p must divide z; but then p

st diVidEi(ﬂf,y,z) = 1 which is a contradiction; hence d must be

without, phime factors; in other words, d = 1. Similarly, (@2 =1
and fy2) = 1. :

A (% "The integers z and y must be of opposite parity. Tor if « and
¥ Were hoth even, we would have a contradiction of {z,y) = 1 which

Was established in step (). Andif 2 and y werc both odd we could

apoly L.2and have s’ 4 y* = 8X +1-+8Y 1= X+ 1)+

but accarding to 1.2 there exists no integer z with a square Whi_c?ll} s2
more than a multiple of 8. We may, therefore, assume ¥ 0 b even,

say z = 2X, and y to be odd. Then, of course, must be odd, and
~ Wemay define new variables r and s, which will be integers, &8 follows
3—y=2s,z+y=2r; or y=P-S,Z="°+_.S:

i

e

v.g}u .



88 » PYTHAGOREAN TRIPLETS Chapler 14

(3) The new variables r and s must be of opposite parity and rela-
tively prime. Suppose (r,s) = d; then from the last equations of
8tep (2), it follows that d divides both y and z; but by step (1) we
know that (y,z2) = 1, hence d = 1. Furthcrmore, unless r and s are
of different parity, y and z will not be odd, as agrecd upon in step (2).

{(#) Using the new variables we may veplace the original equation
by a new equation of simpler structure. We rewrite ¢ - yi = 22 a8
@ =2t — ¥ = (z + y){z — ¥). By substitution we obtain 4X%="1rs
which we simplify 1o the form rs = X2 A\

(5) Steps (3) and (4) imply r = 2, s = ¢?, X = up, whitrtit and
v are integers that are refatively prime and of opposite pdrity. Sup-
pose (rnX) =m, r=um, X = wm, then (n,8) = 14ashin »¥x. 5.4
Also by L.1, we have (1) = 1. The equation r& 57 X* obtained in
step (4) takes the form ums = v'm?, or us =g Since (mo?) =1,
it follows from Ex. 6.2 that m = wu; thea = v2w and r = .
Therefore w divides both r and s: howazé}, by step (3) we know
(r8) =1, hence w =1 and r = w?, 5wt X = up. Also by step
(3}, 7 end s must be of opposite parity} hence by L.2 we sce that u
- and v must be of opposite parity. B8

(6) Hence all primilive solutidns of x2 + y2 = 22, if there are any.
must have the following formi™

= 2ue, Oh= w2 — 12 r=ut
where (12,5) = 1 and \jVJrC}e u and v are of opposite parity.

This step is, of (X{urée, merely a summary of steps (2) and (3,
with emphasis updn the possibility that there may be no primitive
solutions of the(driginal equation.

(7) Everysct of integers 2,y,2 defined as in step (6) is a solution of
the Pythagdrean equation. This check is easy since by elementary
algebranwe find that,

N () 4 (@2 — )2 = (uz + )2,

2\ ;@9)’ Every set of integers z.y,z defined as in step (6) is a primilive
\sblution. et (2un, w2 — 42, 2 + v*) = d. Then since (u 4 2)? =
(u‘-’--}—. #) + (2ur) and (u — 1)? = (u? + v?) — (2up), it follows that
d divides (u + )% and {u ~ v)%. Let p be a prime factor of d. Then
by 6.1, p must divide both u + » and 1 — 2, Hence p divides both
Zu N -(u T+ @=v) and 20 = (w + ) — (u — v). Therefore
p divides (2u,2r). However (2u,20} = 2(u,p) = 2, because in step
{6) we agree to take (u) = 1. Therefore p divides 2 but p 5= 2 for
m step (6) we agree to take u and v of opposite parity so that u® + v
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is odd, hence d is odd, and p must be odd; hence d has no prime fac-
tors and d = 1. Do (z.y,2) = 1 and the 2.,z given in step (6) do.
form @ primitive triplet.

Thus the [ormulas in step (6) represent all primitive solutions of
the Pythagorcan equation and from these primitive solutions all
solutions can be generated as cxplained in the preliminary remarks.
This completes the solution of the Diophantine equation &* 4 y? = 2

In step (6) by insisting that 0 < » < u we can make all of AT
positive. A shorl table of examples follows:

N

» o u oz ¥ I p oz ¥ Z ¢\
12 4 3 5 g 5 20 21 29 O
14 8 15 17 2 7 28 45 530N
1 6 12 35 37 2 9 36 77 88
1 8 16 63 65 5 4 24 TN
2 3 12 5 13 38 4835 73

9. N\l

14.2. The inradius of Pythagorean triplets. Let us consider &
Pylhagorean triplet (z,v,2) of positivie:' integers I.Y,? guch that
2 442 = 2% and let r designate theradius of the inscribed circle of
’E}lc corresponding right iriangle-8s in Figure 7. Let us call r the

inradius’ of the triplet. Ny :

N

Ficuee 7

N\ 1?-11 Given the Pythagorean triplet ,Y,% then its inradius 7 is
an Integer. :
Proof: There are two rather obvious ways to express the area A
of the triangle leading to the following equations:
rz +y+z) =24 =2 .
By the discussion in 14.1 we know that all positive integer solutions

of 2 4 42 = 72 have the form
r = k2up, y = R(# — ), z = k(2 + %),
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where ku,p are positive integers with (12) = 1, with & and p of
different parity, and with u > ». By substitution in the displayed
equation we obtain the relation 2rk(u? 4 w2) = 2kt — ¥*) which
simplifies readily to r = ku(u — o), thus proving r 1o be an Integer,

With certain agreements we can write every pusitive integer r
uniquely in the following form

(14.1) r= 2%%.%1p%, . p,%n, a=0 n=i, )
where p; is an odd prime, a; = 1, and 2 < P < p < ... <pﬂ\.
If n = 0, it is understood that r = 22 If g = 0,20 =1 A

N

We will let the number-theoretic [unction P(r) reppesent” the
number of distinct positive primitive Pythagorcan tripletshaving
as the corresponding iuradius. (We consider triplets sorresponding
to congruent iriangles to be the same: e.g., z = 3 ¥ = 4. 7 =5 s
considercd the same as ¢ = 4, y = 3, 7 = 5) \\V

R.2: If ris given by (14.1), then P(r) =27

Proof: The integers z,y.7 as used in,tlie\proof of R.1 will form a
primitive triplet if and only if & = 1., Fhen the equation for r takes
the form r = »(u — v), where the sedohd factor, u — », must be odd,
since u and » are of different, p-afi'ty. Furthermore, from (#,3) =1
it fo]lows that (o,u — o) = 1-a8%n Ex. 5.8. Conversely, if r = VU
where V and I7 are positivelintegers with {7 odd and with (V,U) = 1,
then the equations V =8 = u — ymay be soived foru = U + V,
7 = V where u and v &re positive integers such that u > v, (n.2) = L,
and-u and » are_ofyopposite parity. Hence all positive primitive
Pythagorean taiplsts having r as inrading are found by factoring r in
all possible Mays as a product VIJ of two relatively prime factors
V and %mhich Uls odd. That this procedure leads to no repeti-
tions Tollows from wx, 1.7, '

S]nce U must be odd, either 17 = Lor U contains odd prime Factors.
I @is given by (14.9) and if U has the factor P, then U must have
Nthe factor p,% in order that r = V{7 with (V,[/) = 1. Hence the

number of choices of {7, aund, therefore, the value of P(r), is exactly
 the same as the nymber ™(r') of factors of / = D . .pne But bY
the formula_ developed in Chapter § we find

_ (7Y = (ex + 1) (e +- D...{e,+1) = 2= :

since each Exponent e; in » hag the value 1. Since P(r) = {r'), this
compleles the proof of R.2,

In pEth.iCUlﬂl', W h&\?e ShOWn that P(F‘) 1s positive for every r aﬂd
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that the Tange of P(r} consists exactly of all powers of 2, mmcluding
=1

As an example, consider r = 15 for which n = 2 so that P(15) = 4. ’
In tabular form the solutions are as follows:

V ot ou e v oz |_ vV U o v|%® ¥ b4
15 L 16 L5480 31 481 3 5 8 3448 55 73
533 8 3 g0 3% a9 1 15 16 11]32 255 257

C . ™\

Let N(r) represent the total aumber of distinct positive Pytha

gorean triplets, not necessarily primitive, having r 8s the correspond-
ing inradius. \ O

R.3: If ris given by ({4.1), then R
NG = (@ + D@a + D@a + 1. (a5 1).

Progf: From the formula r = kv{u — ) In ‘R.IO we see that &
must be a divisor of 7. Then d = r/k is the’ snradius of a primitive
Pythagorean triplet, Conversely, if d jseadivisor of r, say r = kd,
{hen a Pythagorean triplet of inradius £ ¢dn be [ound by magnifying
a primitive Pythagorean triplet of inyadius ¢ by the factor of pro-
portionality k; and distinct solutions for d lead to distinct solutions
for r; also different values of ‘dfle’ad to distinet solutions for r. It
follows that the desired fus@tion N(r) can be obtained as follows:

 ONw) = TPW@)
where the summat.ign\i\s extended over all positive divisors dofr.

This is a perfeetrotcasion to apply the theorem on multiplicative
functions develdped in 8.3, for we can show P(d) to be a multiplica-
tive fmlctiqx{.;,\fn fact by R.2 we know p(d) = 29 where »(d) is the
number , 8 distinct odd prime [actors of . When (ab) =1, the
integar’sj @ and b can have no odd prime factors in common, hence
f,',ﬁ@ﬁ* w(@) + »(b). Therefore if (a,b) = 1, then

\ ) Plah) = 2 = ey = FANYD = Pla)P),
s0 that P(d) is a multiplicative function. _

It follows from 8.3 that N(r) = 2 P(d) is also a multiplicative
funetion, so to find the precise form for N(r) we need only to investi-
gate N(p") for primes p. ' .

When p = 2, the only even prime, we find

N(2%) = P() + P@) + P& + - 4 P29 =
4P EBd . FR=aFl

nd
X



92 & PYTHAGOREAN TRIPLETS Chapier 14

When p is odd, we {ind
N(p®) = P(L) + Plp} + PP} + ... + P(p") =
24204214 42 =32 1.

. Combining these results with the fact that N(r) is multiplicative,
we arrive at the formula displayed in R.3.

For a mumerical example, we take r = 15. Herc a = 0, o, = 1,
a: = 1, hence N(I153) = (0 + 1}(2 + (2 4+ 1) = 9. Then we com-
_pule

k=15 d=1, P(1) = 1 with (4,3,5) leading to {60,45,75 ),
k=5,d4=3, P(3) = 2 with (8,15,17) leading to (40,75 8&)\
and with (24,;,21) leading Lo (120,35,125); O
k=3,d=5, P(5) = 2 wilh (12,35,37) leading to (36 10 5,111,
and with (60 11,61} leading to (18¢,35,183); 2
k =1,d =15, P(15) = 4 Ieading to the [oug ‘p}umtne triplets
given in the previcus example.
2'\\:
EXERCISES N\

EX. 141, Show lhat distinct values of ’l{,t:' s in siep (6) of 14.1 lead to
distinct Pythagorean triplets. SN

8x. 4.2, Find all primitive Pythamrcan triplets having = = 60,

EX. 14.3. Show that it is impossiblc'to find a primitive Pythagorean triplet
with side T where T is eves but not a multiple of 4. Show that all other
integers T ean be Lhe §i{de,\af al least one primitive Pythagoreun triplet.

8x. 14.4. Let T be written”in the form (14.4) and let $(T) indicate Lhe
number of primitiye’ Pythagorean triplets of side T, Show that
ST = 2L 02 according asa= 0, a= 1, ¢ > 1. (L. Bahier.)

zx. 14.5. Follow the method of 14,1 and obtain the complete solution of
the Dlop}@me equal:lon &+ 292 = 2 suppipno the proofs of the
followingssteps:
(0) To tind all solutions it will suffice Lo find all primitive solutions for
“Swhich {my,2) = L
'“\('1] Primitive solutions musl have (2,y} = 1, (2,2} = 1, {v,z) = 1.
/(2) Both « and 7 must be odd and y even. Define ¥y=2Y,1+2x2=2n
z— g= 25
(3) From {2} = 1il follows that {r,s) = 1.
(4) 24 2¥* = 2 becomes 2V =
(3) Vither (T} r = 2R%, s = S% with (2R,8) = 1;0r {II) r = S% s = 2R,
with (2R,8) = 1.
(6) Every primitive solution must have the following form .
= %t(2R*— 8, y=2RS, r=2R"+4 8, (2RO =1
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(7} Every 2.y,z of ihe form (6) is a solation of z* + 2yt = 2%
(§) Every 2.¥%:2 of the form (6) is a primilive golulion.

gx. 14.6. Graph the funciion P(r) in R.2 of 14.2 {or values of r from 1
through 30.

zx. 14.7. Find the eight smallest solutions of P(r) = 8.

gx. 14.8. Graph Lhe function N(r) in R.3 of 14.2 for values of r from 1
through 3.

#x. 44.9. Find the eight smallest, solutions of N{(r) = 6.

7x. 14.10. Show that N(r} =1 has a zolution r for cvery positive infeger £,
but that the solulion is unicue if and only if £is a power of 2, includins,
20 =1. p \:\'

gx. 14.41. TInvestigate the meaning and origin of the word “harpedogdptas’”’

gx. 1412, Lel rgr,.r. designate the radii of the Lhree escriqu.}ci}'éles of
the lriangle corresponding to a Pythagorean triplet. Prov.e.t;ha{;r,,, U
are all integers. If r is the inradivs, show thatlery= rory and
Fa=rFret T _

vx. {4.13. Prove that one side gy of a Pythagorean triplet always has an
exira faclor 4 as compared with the other si ‘iﬁl.” Let N.i{r), Ny,
N,(} indicate the total numbers of Pythagorean triplets such thal
P=r, r=ry F=rs, respectively. Beginning with Ex. 14.12, prove
that,

NG = No(r) + N + N + 1,
where N(r) is defined as in 142; N
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15.1. Ferma#’s“‘last theorem.” On the m

Diophantus,Fermat wroté that the Diophantine
‘ z* 4 y* = 27

is impossible of solution in positive integers x,y,z fo

he Had Tound a truly remarkable way of proving

ab, unfortunately, the margin was not large e

iting out the proof. (The restriclion “posi
* essential, for otherwise £ = 0, ¥ = 7 is a solution
certainly a trivial solution.)

This general problem is still unsolved and i
Fermat’s “last theorem.” By special methods t}
solved as far as n = 616. Despite iis special and
this preblem has been the source of some of
and analysis, as efforts to solve Fermal’s problen
methods and exposed hidden pitfalls of older me

It is easy to show that the problem will be cor
can be shown that Fermat’s conjecture is truc
n=p and for n = 4. Suppose that n is com
n = kp where p is an odd prime for which Fermat

*The author regards seclions 15.1, 15.2, 15.% as basic and
as supplementary.

94
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i known to be true; then the theorem is also true for n; for if we sup-
pose the theorem not true for n, then there exist positive integers
2.y,; such that z” +y* = 7%, but this is a contradiction ol the
assumpiion that the theorem is true for p, inasmuch as it shows
¥ = ¥, Y = y%, Z = z* to be positive integers for which
' X? 4 Y? =27
Similarly, if the theorem is true for n = 4, then the theorem is true
foon=2%k= 2 p
The casicst case in which we can prove the “fast theorem”” is the
case of n = 4 where we can employ a method known as Fermat's
“method of descent” which may possibly have been the “Ijen.ft\arkable
way” which he mentioned. N

15.2. Fermat’s “method of descent.”” Ifa ﬁfépbsition P(n}is
true for some positive integers, then there is apast positive integer
for which P(n) is true. (It is explained in @Jater chapter how this
assertion is teally just another version @ \mathematical induction.)
But suppose it can be shown that the 4ssumed truth of P(n} always
“implies the truth of P{n’) where nl % & positive intoger less than n.
Then a contradiction has beensfeached and the proposition P(n)
must be false. This method~of*proof, depending as it does on de-
scending (rom the positivedinteger n to the smaller positive integer
#/, has long been given(the name: the “method of descent.”
Usually we employ\hms method to prove the falsity of 2 given prop-
osition.  But sométimes we can use the method in a positive way,
showing that the** descent”” is possible until we reach a certain type
of integer; if for this special type of integer the proposition is true,
then weﬁsérf reverse the argument and “ascend” to all solntions of
the pygposition.
N Byth these uses of the “method of descent” will be illustrated in
{the*next sections.

153, The relation xt +y' =42 is impossible in positive in-~
tegers. To prove the proposition used as the title of this section
we shall use the method of descent.

Let us assume that the equation @* +¥* =7 does have some
solutions in positive integers and let %.y.Z be a specific one of these
solutions. If (x,y) = d, then = = Xd, y= Yd, and z = Zd?; and
furthermore X* } Y4 = Z2. Hence if we describe the problem we
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are studying as P(2) and if d > 1, then we have already shown that
the truth of P(z) implies the truth of P(Z) where Z is a positive in Leger
less thanz. Butif d.= 1, more argument will be required. However,
il (z.y) = 1 it follows that (2%y%,2) = 1, hence 22322 is a primitive
Pythagorean triplet. Therefore by the results of 14.1 we kunow thal
We may write 22 = 2rs, y* = 12 — g8 7 = p? | &2, with (r.s) = 1 and
with r and s of different parity. But we musl not choosc r to be even
for then s and y are odd and the relation y2 + s* = 2 is a contradios
tion of 1.2 of 14.1. Hence we have (r,2s) = 1. Then as in spep.())
of 14.1 we argue from (r.2s) = 1 and #* = 2rs that r =R%nd
§ = 28% The relation (232?412 = (R2? and the ‘eéndition
(28%y,R%) =1 show that 25%y, R is another primitiye Pythagorean
triplet, so again wsing 14.1 we wrile 282 = 2up, ye&at — o, B2 =
u? + ¢, with (#,0) = 1 and u and » of opposite Pagity. Again as in
step (3) of 14.1 we see from (u,7) = 1 and §? =¥ that u = [ and
¢ = V% Therefore B = U* + V* and we hve arrived at another
solution of the equation of this sections ifiyother words the truth of
P(z) implies the truth of P(B) and (Wlllaf iz of critical concern for
the method) R is a positive Integériless than z because
R< PRV H4882 12 - 52 = 7,

Hence as explained in 15.2 we have successfully demonstrated the
descent and are therelore ¢ uzht in a contradiction; the only way out
of the contradiction is in{the decision that z* - yi = 22 is impossible
in positive integers. ‘ B\ :

Corollary: Femnat’s “last theorem” is true for n =4, Forif
2t -+ yt = z* i positive integers, we would have gt -+ oyt = (7P
contradicting the principal result of this sectiomn.

154, :The relation a* — 8y* = 22 is impossible in positive in-
tegérs. To establish the proposition used as the title of this section
we shall use an argument that is scen on closer inspection to be
merely a rephrasing of the method of descent.

Let us assume that the equation #* — 8y* = 2? does have some
solutions in positive integers and that among all these x,v,z is a
solution with a minimum value of z. If (z,y) — d, then x = X4,
¥ = Yd, and z = Zd* with X, Y.Z providing a solution with X < =,
unless d = 1. Hence we assume (z,y) = 1. But also (£2y) = 1;
for if © were even, 22 would be a multiple of 8 and z would be a multiple
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of 4: bul, this would require y to be even, contradicting (x,y) = 1.
Hence (z.2y%,2%) = 1 and if we write the given equation in the form
2+ 22y = (x9)?%, we {ind that 2,2y%% is a primitive solution of
the equation studied In EX. 14.5. 'Therefore we may write
s= (2R — 8y, 2yt =2RS, ¥ = R + &2, (2R,S) =1. Then
gsince (I1,S) = 1 and y* = RS we may write B = u?, S =7, with
(2u22") = 1. But then z* = 2(w)? + (19)? so that v’z is also a
primitive solution of the equation studied in EX. 14.5. Thereiore
we may write ¥ = £(2M° — N2, ut=2MN, z= oM + Nl
(2M,N) = 1. TIrom EMN) =1 and 2 = Z2MN we may )V\I'iie
M=2Y:, N=X 2Y.X)=1L Since v and N are odd, it fallows
fom L.2 of 14.1 that * = 2M2 — N2 = 8Y* — Nt is impossible,
and it is the sccond case 12 = N2 — ZM? = X* — 8 Y44phich must
hoid. Rut this is an equation of the same type ith which we
started, and it has a solution in which X £ X2 = NXWN! + oM = .
Hence we have reached a contradiction of j;lts.‘mhlimal property
supposedly enjoyed by z. The only resolutienof this contradiction
is in the thoorem that the equation @* —'8y¥ = * bas no solution in
positive integoers. \+

~

Corollary: The relation z¢ 402y* = 2* i impossible in positive
integers. N\ :

Proof: 1f we suppose thaf'there exist positive integers &Y.z such

that z* - 2y* = 2%, th f\ﬁ‘e) may write

(zt — 2982 = (x* + 23’4)2 — 8yt = 74 — Byd,
and inasmuch asy%écan show that z* — 2yt 5= 0, it follows that one
of the triplets s\ & (x* — 2*) provides a golution in positive inte-
gers that coglyadicts the principal theorem of this section.

The misxbﬁfg detail may be treated as follows: suppose there exist
positivéNintegers  and y sach that x4 — 2yt =0 or &¥ = oyt If
@) d, then z = Xd, y=Yd, (XY)=1, and Xt = 2Y4
Hentco X must be even, say X = 25 and Y* = 85*; but then Y must
be even, which contradicts (X, Y} = 1.

15.5. Chains of solutions of x* — 2y* = z. In contrast to the
preceding result about the equation z* + 2y* = 7%, it appears that
Fhe equation zt — 2y* = 22 does have some solutions in positive
integers; for example, we find by inspection that z=3y=22=1
18 a primitive solution, and [rom a primitive solution as many other
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solutions as desired can be obtained by taking X = kx, ¥ = ky,
Z = k*z where k is any integer. Conversely, any solution of the equa-
tion is a kind of multiple of a primitive solution: for if Y,z 15 a
 solution and (2,y) = d, then z = X4, y=Yd :=2Zd& (X,7) =1,
and X* — 2Y4 = Z*, with (X, Y,Z) = 1. Let us, therefore, seck all
primitive solutions, .

If (xy,2) = 1 and &t — 2y* = 22, then {z.y%2%) = 1 and 2* + 2({2}2
= (2%)? 50 that 7,222 is a primitive solution of the equation studied
in Ex. 14.5, and we can write O\

= £(2R* -8, y2=2RS, 22=2R*+8, (CRHZL
It follows from (2R,S) = 1 and ¥* = 2RS thal R = 2, § =1,
(up) = 1. Then (x*2u%z) = 1 and (1%)? + 2(2u2R = #* so that
), 2u% 2 is another primitive solution of the quga{fi_on in mx. 4.5
and we can write \Y% :

= 4+(2P - (2), 2u®= 2P, = RIS/, 2PO) =1,
From (2PQ) =1 and u? = PQ it folloWs that P = «, Q = I,
(2a,6) = 1. We note that both p and Bare odd and then proceed to
consider the two cases for 22, O

- Cased: o = b% — 20% Sincednd b are odd, this case is possible
only if « is even; but then Y= 2un = 2ab, so that ¥ is a multiple
of 4. Since a £ ab = u & 2w =y, it is possible in this case to
descend to a solution of the original equation with smaller “y” value.
If this were the onlﬁgirfd of descent, then we would have a proof,
just as in 15.3 and 15.4, that the given equation has no solution.
But we note that this kind of descent will fail as soon as we reach a
“y” which is(hot a multiple of 4. We must turn our attention,
therefore, t@fb}ie other case for,s% :

Casg;?% “# = 2¢* — b%. Since vand b are odd, this case is possible
onlyiha is odd; but then ¥ = 2uv = 2abv is a muitiple of 2, but not
anltiple of 4. :
\/Thus every solution of z* — 2y* = ;2 s a member of a chain of
solutions of this same equation, descending with respect to “v,”
and ending at a primitive solution of an equation 2af — bt = 0*
whose complete solution we will now attempt, hoping to build back-
ward from the solutions of this latter equation to solutions of the
given problem.
Matters of oddness and evenness as in L.2 of 14.1 show that &
primitive solution of 2qt — ¢ — »* must have a,b,p all odd and
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(j;;u) -1 Iweseth® +v=2Tand B —op=2Uthent2 =T+ U
Cande =T — Uand it follows that (T,U)} = 1. Our equation takes
the new form

gt = bt b2 = T+ UP+ (T — Uy =272+ 207 ot = T2 + U
Hence T,U,a? form a primitive Pythagorean triplet, atthough not
necessarily a triplet ol positive integers for [ may be negative or 0
{however, this last case occurs only when T'=v=1>0= 1). With
this understanding we may write :

T =mt— ni, U=2mn, &= m? +nh  (man) =1, .
with m and n of opposite parity, but n not necessarily positive \(n
particular, we shall be interested in the case n = 0 and m ;;:1‘ coT-
respouding to a minimum positive value of a). Since bt =Pt U =
mt — 12 4+ 2mn and b is odd, it follows that m must bédd, rather
than n, so we bave (m,2n) = 1. Since (m.na) = k aﬁ‘l:}\m3 4 n? = a
we see that m,n,a is a primitive Pythagorean trigl@t go we set

m=g —h, n=2gh a= g+ BN = 1,
with g and h of opposite parity. But we gl‘SQ\have (bm + 1) =1
and B2 - 272 = (m -+ n)? so that b,n,m O is a primitive solution
of the equation in EX. 14,5, hence waget :

— 4(247 — B, n=24B, mitn=24 +B, (2AB) =1
By comparison we have gh = AB and g2 — B2 =242+ B — 2AB
and these equalions give us thovclue to how to procecd.

Let (g.B) — D with ¢= Day, B = Dby, and (abr) = 1. Then
from gh = AB we ha% wmh = Aby and since (a,b) = 1 we find
h=Eb, A = Ea,. ~Sitce {(g.h) = 1 st follows that (D.F) = 1. From
@ — B = 242 4wR¥— 24B we find by substitution and rearrange-
ment E*(2a? ”;[_:};2) _ 9FDah = Da? — b, U we multiply both
sdes of thisequation by 2a:* + b and then add to each gide the term
Dzalzbﬁ\i\f‘ﬁml that .

C AV (EQe? + b)) — Dbt = DXt = b .

encd it follows (see Ex. 15.1) that 2a.4 — bif must be a perfect
square, say 2m? — bt = e . .

Ordinarily @, < Do, =g < ¢+ n =, so that it 38 usually
possible to descead from a solution with a given “u” 0 & solution
with a smaller “¢.”” The one exception is the case ¢ = L h=0,
when we find ¢y = @ = 1. Thus 2 descent [rom any primitive soht- .
tion of 2gé — b4 = 4 to the basic solution @-= Lb=1lo=11Is
always possible.

1t remains o show the methoed of ascent, starting from 1,1,1 or any
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known solution @,b,,2. From the last displayed equation we find,
upon taking square roots, that
E(2a:? 4 b)) = D{ahy & D).

Since we must have (D,E) = 1, we find K, = (2a:% + bty + )
and Kz = (2a + bf,aaby — m), and then in the first case we take
D= (2a?+b2/K\, E = (@b +v)/K, and in the sccond case,
D = Qa? + 02 /Ky, E= (ahy — 1)) /Ks. Then we compute, for
whichever case we desire, the values of g = Day, h = Eb;, A =FHEay
B = Db,. Finally we compute A\

a=g +k, b= +(242 - B, v= (g8 — 2 — 2h) =8ty
For example, after 1,1,1 the next solution is a = 13, & =1 = 230,
there being only one case in this first step of ascent. KON

- Perhaps the following symbols will help indicate thé/Sense in which
the preceding formnlas represent the complete o€ of primitive solu-
tions of 2at — b* = 2 Set A(0) = (1,1,1) an A1) = (13,1,239);
then let A(nsisg,. . .,i.) for n = 2, with each’; = 1 or 2, indicate a
solution &b,y which is 2 member of Lhc“‘ﬁth generation” with the
following “gencology”—that according' a8 i; =1 or 2, the member
(when j = n) or its *ancestor” of theyth generation (when 2 £ j =
n - 1) was a “male” (K)) or “fethale” (Ks) “offspring” of A(j — 1;
A PE R A\

Using this terminology weind in the second generation

A(2;1) = (2165017, 2372159, 3503833734241),
. A@R)"= (1525,1343,2750257).

In the third genexgtion there would be four members: A(3:1,1),

A(3:1,2),A(3;2,1){A(3;2,2); but we shall not bother to compute the
" values of a,b,.u\foi' these, because we are worn out with computing
and chec%g‘,the values of a,h,z for the second generation!

Of course this recursive complete solution is a very different article
from am'eiplicit complete solution like that for primitive Pythagorcan
triplets; but since every primitive solution of 2at — bt = ¢ occupies
a (feﬁnite_placc A{nsie,. . .,i.) in the “family trec,” the description
of our formulas as providing a complele solution seems justified.

Now let us return to complete the solution of the original problem
zt — 2yt = 2,

1t follows from the discussion preceding Case 1 and Case 2 that we
can start from any primitive solution of 2a* — b* = 4* (whose com-
plete solution has just been described) and can find a primitive soli-
tion of #* — 2y* = %; or we can continue from any primitive solution,
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say 2,y 2" of Lhe latter equation to find another primitive solution by
exactly the same formulas, providing we set b =z, @ = ¥y, v=12;
the necessary formulas are as follows:

= 2at 4+ by vy =2aby, 2= + (Ba®ht — v*).

For example, {rom 1,1,1 solving 2a* — bt = ¢* we find 3,2,7 solving
gt — 29t = z%; then withb = 3, ¢ = 2,2 =1, wWe accend to the sotu-
tone =113,y =84,z = 7967 and so on, as far as we care to go in
this parficular chain, : )

The complete set of solutions of &* — 2yt = 7% can be described a8
tollows: use ihe symbols S(0;6k), S(1;t,k) and S(n;ig,ig,.‘.,iﬂ\;t,@
withn = 2and i; = lor 2, and with { = Land k& Z 1. Heresthe O,
the 1, and he nsizis. . ia refor to the solution A(O),"A;(T), and
Alnsisis.. . .,in). Tespectively, of 2¢* — bt = v* [rom W}uch the chain
of solutions of z* — 2y* = 2* originates; the ¢ indicatés the “genera-
lion” of z,y,z in the chain of primitive solutionscef z* — 2y* = 725 -
and the k indicates a solution of #'y"7’ obtaified from a primitive
solution 7,v,z by setling 2’ = kz, ¥ = ky, 2=k

For example: S(0:1L,1) = (3,2,7), S(0:8,2) = (6,4,28),

S(0:1,3) = (9,6,63); S(0;21)-= (113,84,7967);
S = (57123,‘@214, 3262580153).

EXERCISES

Ex. 15.1. Il m,nk are veh:ﬁltegers with (mn) = 1, mn# 0, and k= 2,
show thal there cx&on-zem inlegers z and ¥ such that mz* = ny®
if and only if thexg s:;re irtegers M and ¥ such that m = MF¥ and n = V%

EX. 15.9. 1f therdho%idt non-zero relatively prime integers « and y such that
0= aw* Hmry + ...+ ety T Aaile sl A
where l&”ﬁ{ “rve integers wilh aga, 7 0, show that ¢ must divide a, and
that athist divide .

EX. 153;:3 Apply Bx. 5.4 or FX. 15.2 to show that the Diophantine cqua-

\t‘"hls gt = 292wt = 2% it = 2yd are jmypossible of solution in non-zero

N integers « and v.

EX. 45.4. Use Fermat’s method of descent 1o show that a* -+ 4y* = 2 is
impossible of solution in positive ntegers.

EX. 15.5. As a corollary to Ex. 15.4 show that
positive integers.

" EX. 156. As a corollary to EX. 5.5 show that the area of the right triangle
corresponding to a Pythagorean triplet cannot be a perfect square.

EX. 15.7. Make a diagram showing the intecrelated family trees for the
56 solutions A4 and 8 described in 15.5 forn = 0,1,2.3;{= 1.2:k= 123

gh—yi=2tis impossible in
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cHAPTER 16 -
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EULER'S PHI-FUNCTION
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16.1. More about multiplicative funétions. Asa tool for later
use in this lesson, we need a theorendWhich is essentially a converse
to that given in 8.4, s0 we shall use'the same definitions and notations.

Theorem: If F(r) and f(n) ’al-*e-nmnber-theoretic functions such
that K
(1) F(n) is multi I"\éaﬁve, and

(2) F(n) = 3f(d), summed over all the positive divisors d of n,
then f(n) is mu]ti}\ali,eétive.

~ Proof: By{#), F(1) = 1; by (2) F(1) = f(1); honee f(1) = L

When (¢.6)) 1, we have shown in 8.4 that the sct S of all positive
divisors 'Cof ab is exactly the same as the set §* formed of integers
dd’ \Yhfqi‘e d runs over the set S of positive divisors d of ¢ and where
dl-xfs over the set S’ of positive divisors & of b. Furthermore We
kngw (d,d) = 1.

We shall make an induction proof on n = ab, where we assume,
of course, that (,b) = 1. The fundamental theorem guarantecs that
there is such a representation for every positive integer n.

(I) When ab =1, then ¢ = 1 = 4. Since we have noted above
that f(1) = 1, it follows in this case that f(ah) = f(@)f(B).

_ *Chapter 16 is a basie chapter, cxcept for 16.4 which is supplementary.
10%
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(1) The induction hypothesis regarding 7 = ab with {g,b) = 1
will be that f(dd") = f(dyfd) if (dd) =1 and dd' < ab.

From ({) we know ihat Flab) = F(a)F(). From (2) and the
remarks above about the sets S* and S it follows that

Zﬂf (d) g;f(d’) = ;f(d”) = ;:f(dd’)

By the induction hypothesis it follows that the expanded product
on the left contains, with possibly one exception, exactly the samel
summands as does the sum on the right. But this forces the remein-
ing terms on cach side to be the same, namely, f(@) HGES f(ab):. NI
No matter what particular representation n = ab with (@b) = 1
is chosen, arguments (I} and (II) are valid; since there.dre for each
n only a finite number of these representations, it ﬁ)’l}ﬁﬁf& that the
induction argument is complete and that f(r) i8 wqultiplicative.

Corollary: For a prime p, we have f(p"\)ﬁ} F(p®) — F(p*™).

Proof: The sum (2) for F(p® contaus just one more term,
namely, f(p?), than does the sum (2) for.F(p*).

By combining the theorem and corollary, it follows that if F(n) is
‘multiplicative, then the exactsft’jrxﬁula for f(n) is readily found.
(Even il F(r} is not multipligafive, a formula for f(n) is known. See
the exercises of this 1&880{1.:1\
% . N\ o

2. Definition and formula for Euler’s phi-function. The
Luler Phi—functiop\(sijmetimes called the totient function) is a widely
used nmnber{l{eﬁretic function, almost always indicated by ¢(n).
Yor n = 1, wadefine (1) = 1, and when 1 > 1, we define $(n) to be
the numberlef positive inlegers less than n and relatively prime to n.

FD}". B?iamp]e, since the only positive integers less than_lz and rela-
tivglyprime to 12 are 1,5,7,11, it follows that $(12) = & Similarly,
B = 1, 6(2) = 1, ¢(3) = 2, #(d) =2 ¢6) =& $(6) = 2, etc.
But we desire a formula which will allow us to compute the value
of ¢(n) dirceily from the standard form of 7, without actually isting
all the numbers less than n and relatively prime to 1. '

In this lesson we shall give twoO derivations of the formula for
$(n}; in a later lesson we shall give yetb another derivation. . _
For the first derivation we shall begin by stating and proving the
theorem which is the correct generalization of the following example:

12.= g(1) +6(2) +(3) +9(4) +6(6) +¢12) —1+142+2+2+4
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Theorem: For any positive integer n, n = Sa(d), where the
summalion extends over all the positive divisors d of 7.

Proof: The theorem is obvious for n = 1, since 1 = ¢(1). Con-
sider n > 1. For every positive integer z < n, (z,n) = d, where d
Is a uniquely determined divisor of n. On this basis alone the n
numbers 1,2,...,n are divided into mutually exclusive d—c-lasses.,\
From (z,n) = d we have ¢ = kd, n = d'd, with (k,d"y = 1 and with
k=d since z<n. The casc k = d is exceptional for [rom( the
condition (k,d") = 1 this case can arise only when d = 1. I{'m(:e'in
all cases we find that there are exactly ${d’) choices for k.and hence
¢(d’) integers & which belong to the d-class. Thus by thovuse of the
d-classes we have found n = Z¢(d’) where d'd = n_and the summa-
tion is over all divisors d of n. However the set>ofrumbers fd'} is
simply the set {d} in another order, hence we arejustified in writing
n = Z¢(d’} = Z¢(d) which completes the prqof

Thus in the example given above, ANV

¢{12) = 4 indicates 4 integers in the'¥-class: 1,5,7,11;

#{6) = 2 indicates 2 integers iri'the 2-class: 2,10;
¢4} == 2 indicates 2 intege;;g;iﬁ"the 3-class: 3,9;
¢(3) = 2 indicates 2 integérs in the 4-class: 4,8;
o, $(2) = 1 indicates 1 iml\téger in the 6-class: 6;
“ (1) = 1 indicates lGgteger in the 12-class: 12.

Of course, this theoy&n is “tailor-made” so that the theorem and

corollary in 16.1 may.be applied to obtain the following result.

R
Theorem : I{n‘ 18 written in standard form as

-~ AD” no=pifipe®. . pp% '
‘where eachi p; is aprime, 1 < p; < pz < ... < ps, and a; = 1, then

QY =a(g ). (),

‘ Proof:  'Wehave observed before in 8.4 that the function I (n)=n
is multiplicative, Since we have just shown that n = Ze(d), summtfd
over all the positive divisors d of n, it follows from the theorem in

16.1 that ¢(n) is multiplicative. From the corollary in 16.1 we see
that :

$(p%) =F(p=} — F(p=1) = pe — pe-1 = P“(&;_.l).
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Combining Lhese results we arrive at the formula for ¢(n) displayed
above.

For example: since 12 = 2°3, H(12) = 12(1/2)(2/3) = 4; and since
8316 = 2:3*7(11), it follows that, : _
H(8316) = 20327 (11)(1/23(2/3) (6/7)(10/11) = 2¢3% = 2160.
Interpreting this last example, we know that there ars 2160 positive
integers less than 8316 and relatively prime to 83103 and we have
obtained this ficure of 2160 in a way far more satisfactory than
mere counting. '

16.3. Combinatorial logic. To obtain another indepfe\ﬁ&e}lt
derivation of the formula for ¢(n) we shall first need to make a
digression and discuss certain topics in combinaiorial 1%1&6.’%

Let S he a set of objects. Let A be a sct of objec t”e:s{'uS possessing
a certain property or attribute; without, confusien this property
itself can also be designated by the letter A. et AB indicate the
set of objecls in S possessing both properiies Aland B; if there are no
objects of this description let the set be aderibed as the emply or
- rtdl set and designated by the symbol . Let A’ indicate all the

objects in S nef possessing the properi;’y A. Let A 4 B indicate the

sct of all objects in S possessing etther property A or property B.
Lot N(A) indicate the number of objects in the set S possessing the
property A. R

The following results@xe’ then obtained by formal logic:

): N(A +B) = J$(\>1) 1 N(B) — N(AB), for the N(AB) objects
possessing both properties A and B are included once in N(4) and
again in N(B) llia\nce we must subtract N(AB) from N(A) + NB}
io obtain the édrrect count for N(A + B). _

(©): NQA4-B)C) = N(AC +BC), for both (A +B)C and AC +BC
contai}?l?éxactly the same subsets AB'C -+ ABC + A'BG.

_DAYN(AA) = N(A), for A4 = A
W N@S) = N(4) + N4, for AA’ is an empty set and A + A
='S hence it follows from (1) that N(S) = N(A + A) = NA)
+N(4) — N(44") = N(4) -+ N(AD. |
"Theorem: If Ay,As,. ... A5 018 k properties possessed by various
elements of § then

& k
N(Ay + ds ...+ Ap = LN(A) = ZN(AA)

= L=l i<

b (FDFN(AA Ay,
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- where the general term on the right of this formula is
(D™ N(AqA,. . A, 1=r <k,
with this [ast summation being extended over tho (5 combinalions
of 1.2,.. .k taken r at a time.
Thus, for example, if 2 = 3, we have

N(Ar + A2 4 Ag) = N(4) + N(Asz) 4- N(4y)
—N(Am’ls) - N(AlAs) — N{Alz‘iz) —!— i\'r(_/h_r’lz“-flg). Q)

Proof:  The proof of the theorem is by induction on k. .\

(I) When & =1, the theorem ig true, reducing to .th:c\ trivial
observation that N(4,) = N(4,). AN\

(II} We shall assume that the theorem is tru for every case
involving k or fewer attributes and examing- %8 case of & 41
attributes. With the aid of (1) and (2) we maywrite

N+ Aot Ai+ Au) = N+ A8 4+ NAw)
—N((A1+... + A)Ary) = N(4, + A L+ A+ N(Ary)
— NA A + AzAk.»r},j'i: oo AsAr).

Now we may apply the mduction bypothesis to cach of these sets,
for they each involve not more, than & attributes. In this application
when a situation like (A4 :Ag,)(4;4 kq1) arises, we may use (3} to

write this term in the simpler form A:A4;4,;,;. Using these obscrva-
tions we now find tha‘\Q ™

N\ k 1
N(A .. +A~L +Ak+1) — ZN'(A‘-) _ EN(A'SA;')
O\ i=1 =i i<i
AOTH L (DPNGLAL A + N(Ar) —

Y,
{EH— IV A ML o+ (1N, A 0

F= LN Li=l; i<f -

ms\; v .k..!.]_ Bl
V= I =3

Li=1l; §

(AA) + .+ (=D N (A As. . Apd i)
<j

But this last result is precisely the form the theorem should take in
the case k& 4- 1.

By (), (II), and the principle of mathematical induction the
theorem is always true.

~ Corollary: If N = N((A 4+ Ay + .. + Ay)’) indicates the
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. pumber of elements of S possessing none of the properties Ai, Aoy,
or As, then 1
3 &

N = N(S) — ;N(A,-) + ifjj{A;Aj) - (;—l)kN(AIAg‘ LA,

=1
Proof: The corollary follows readily from (4) and the theorem.

Theorem: If n is written in standard form as
no= moipe.. Piy /
where cach p; is a prime, 1 < p1 < P2 < ... <pmanda; =1, theh
o(n) = n(l — 1/pp(1 — V/pa). .1~ Ypw. D

N\

Proof: We intend to use the corollary above. We let S be the
get of integers: 1,2,3,....7% We let A: be the properfty“’that an
integer is divisible by the prime p;. Then N(A3), thgﬁuinber of inte-
gers in the set S divisible by the prime p;, is givehby 'N(A) = n/ps
And N(A,4 ), the number of integers in S divisible by both p; and pj
is given by N(4:4,) = n/ppi; etc. Sinceldin) is the number of
integers in S nol divisible by any of the prpaEs p1,p, - - - P it 0llows
from the corollary above that N

o(n) = N' = N(S) — ):,N(AQ).:# STN(AAY) — -
N\ + (—=1)*N(Ards. . AR
=n — Zn/pi;m-ii\‘znfpepj — ... ("DkﬂfPlPZ- --Pe

since the expansiopsof this last product is seen to contain exactly
ihe summands Ustéd in the previous line, correct even to plus and
minus signs’.\";,\" :

_16.4 Ibversion of the Euler phi-function. Let us consider the
lnversg*problem: given g, Gud all solutions 7 of o(n) = @a.

When @ = 1 there are exactly two solutions: n =1 and 1 = 2,
fof if n > 2, since both 1 and n — 1 are Jess than n and relatively
prime fo n, it follows that ¢(r) > 1. In fact if (in) = L with
0<i<n, then (n—im =1 and 0<n—E<m furthermore
n — {3 i, for otherwise we would have n = 2i and (i) = i which
would contradict (i,n) = 1 whenn > 2; hence if n > 2, the integers
- less than n and relatively prime to n occur in pairs and ¢{n) must be
even. (This result also appears directly from the formula in 16.2,
see EX. 16.1).
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Let us suppose n > 2 and write » in a slightly modified standard
form, suggesled by the formula in 16.2:
(161) = HAik‘+1HBj
wherc the A’s and B's are distinet prime factors of n and ;2 1
(the TI is the usual abbreviation {or the product of terms of the kind
following the symbol; of course, in certain o there may be no prime
factors of type A, or none of type B). Then by 16.2 we have

¢ln) = nll{l — 1/4A0(1 — 1/B,) Q
which on simplification gives us the following formula: A
(16.2) ¢(n) = UAMI(A; — DIIB; — 1). ™

We attack our problem by finding all ways ol writing a m‘t}he form
(16. 2) and then we can pass back to the solutions r in the Towm (16.1).
If @ is odd and a > 1, there are no solutions, smc,{,\cp(n) must be
either 1 or even, Ha\rmg previously discussed {he case ¢ = 1, we
suppose now that a is an even posilive integer.

Iiigrst write a in standard form as ¢ = F‘i?’zz‘fs .. P, % where the
Piareprimes, 2= P, < Py < ... < Puyand the a; g ] Then form
the following (a: + 1)(as + 1) (a,,, ,+ 1) numbers in lexicographic
order: &

Ob’:l-sbzv v e e gby = 1 + Plblfg‘s P om 0= {J._; = .

understanding, as usual, that £ = 1.

Then classify the C's as {éllows:

(1) Discard (s that are}lot primes,

(2) Il C is a primexP, call it A Order the A's by magunitude:
Ay <A< < A

() IfCisa pmme, but not a P, call it B. Order the B’s by magni-
tude: B, < Byl .. < B,

Next, pﬁ"ef‘dmg in lexicographic fashion, form all the following
sets of exponents L(V) and the corresponding numbers N, as follows:

.r."' L(J’V—) k],kg, . k“, 81,82, .. 8 tI,n':g, .. f
unde;: the restrictions ¢; = 0 or 1; sy, = 0 or 1;if s; = 0, then k; = 03
¢ =1,then 0 £ k; < a.:
N = MAMII(A; — 1DSIB; — DY

where the products run over all the 4, and B ; found in (2) and (3)-

Each set of exponents L{V) for which & = a gives a solution

n=II A Kptss H.B T

of the equation ¢(n) = «; and all solutions are found by this method.

In discussion of this rule let us note that the s include «ll possible
numbers such that € — 1 will divide a, which is the requirement



Section 4 INVERSION OF THE EULER PHILFUNCTION » 109 '

suggested by the form (16.2). But the A; and B; corresponding to
the A; — 1 and B; — 1 in (16.2) must be primes, so We throw out
the ("s which arc not primes. The distinction between the B’s
which are not Taclors of ¢(n) = e and cannot be repeated factors of n,
" and the A’s which are lactors of ¢(n) = a and can be repeafed factors
of n, is-explained by considering the equations (1 6.4) and (£6.2).

Tor example: ¢ = 72 = 232, Py = 2, a1 = 3, P, =3 a =2
(m=141=2=As; Cy=143=4 out; Cre= 1+ 9= 10, out;* &
Cm=1+2=3=A2: Cn=1+6=7-_—‘82; Clg=1+]3=19-_—'84
o1t A== By Cu=1412=13= By Cn=1+30= 374 BY;
Cu= 1+ 8= 9, oul; Ca = 14 24= 23, oul; g == 1+ 72 =7‘3= B

We must then systematically find all solutions of N

N = 2E3Fla2e4u6h(12)(18)4(36) 5(T2)% = =2
subject to the restrictions {; = 01;8 =0=Fkis L£1,0s k€38
s=1,0<k < 2. In tabular form the soiul‘ii{@? are as [ollows:

LINY: Rikesisabilods s b - Jat n
0000000001 p - 73
0000011000 812 7-13
00001001005 418 5.19
00010000LD% 236 3-37
0010000401 172 2.753
00100L5000 1-6-12 2.7-13
0010 {(}.0 100 1-4-18 2.5.19
00130000190 1:2+36 2.3.37
01QYo01000 3.2.12 9.13
0411001000 3.1.2.12  2:9-13

A2 01100000 9.2:4 27.5
,\\\"0 211100000 9.1-2+4 2.27.5
AN 101000001 0 2-1.36 4437
~O lo1i1000100  2:1:2:18 43419
N/ 1111010000  2:3:1.2:6 497
2010000100 4-1-18 8-19
22110060000 4+9-1.2 8-27

Hence ¢(n) = 72 has exactly 17 solutions, namely, 1 = 73,91,95,
111,117,135,146,143,152,132,190,216,222,223,234,252,270. '
) Concerning the inversion problem of this section there ig an
nteresting conjecture by Carmichael to the effect that if, for a given
¢, the equation ${n) = @ has any solutions, then it has af least two
solutions, '



110 o EULER'S PHI-FUNCTION Chapter 16

EX.
EX.
EX.
EX.
EX.
EX.
. 16.7. Show that the numbers @ = 242,244,246,248 {épn’a sequence of

EX.

EX.

EX.

EX.

EX,

e &
h

\_ 3

EXERCISES

16.1. Show from the formula in 16.2 that ¢(n) is even for n > 2.

16.2. Find ¢(72), ¢(210), and ¢(p?) where p is a prime. ]
16.3. Bhow that the sum of all integers less than n and relatively prime
to n is given by ng(n)/2 for n > 2.

46.%4. Prove that if (z,b) = 1, then ¢(ab) = ¢(a)p(d), using the formula
for ¢(r) in 16.3. \

16.5. Construct a table (46 entries) of all values of A%(A — 1\] 5000

‘where A is a prime and k = 1.

#6.6. Find all solutions of ¢{n} = 60, using Ex. 76.5 01-;]6"4:

four consecutive even numbers such that there,":a}e? no solutions of
$(n) = a. !

16.8. Find a sequence of five conseculive g¥en’ numbers a (less than
1000} for which there are no solutions Lo ¢én}= a.

16.9. I n> 1 is written in standard\ form as == p,“p®.. . ps"™
where each p; is a prime, 1 < py < pa ... < ps, and a; = 1, define
the Mobius function p(r) as follawdif any a; > 1, define u(n) = 0; if
every a; == 1, define u(n) = (——,UF:’ For n=1, define (1) = 1. Prove
that p(n) is mulliplicative. .fj‘o

16.40. Use 8.4 to prove that G(n)} = Tuld), summed over the positive
divisors d of n, is multjplicitive, and that G(rn) = 0 when n > L.

16.11. If F(m) a d{:ffﬁ) are number-theoretic functions such that
(1): Fin) = Ef(@klmmed over Lhe positive divisors d of r, prove
that (2}: f(n) = Bu(d)F(d), sunmed over the positive divisors d of 7,
where dd’ =/hJand where u(n) is Lthe Mobius function of the preceding
exercises, {{Hini: show by induetion thal; (1) completely delermines f(n);
t-hen{ oW that (2) solves {7}, employing the properlies of G{(n) in
mX. 4630.) :

1634%. Use Bx. 16.41 and the first theorem of 16.2 to give a derivation
g}’ the ¢(n) formula not depending upon a priori determinalion that
@(n) is multiplicative.
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CONGRUENCENOTAQ?MZ

17,1, Definition of congruence, fijx&dulo m. Let m be a fixed
positive integer, then we shall define the integer & to be congruent to
the integer b modalo m, written - ' '

cp=b mod m
and read “a is congrudabiio b mod m,” if and only if
C @ —b=~Fkm

where k is an infeSéf.

For examplé®y 17 = 2 mod 5, because }7 — 2 = (3)5:

aY _ —8—2={(-25
AN\ 3 = 2 mod 5, because —
O 17 = —8 mod 5, because 17 — (~ 8) = {5)5.

T}ﬁ%ﬁbtation is due to Gauss, and, as we ghall see In thls and lat.g_r
ha?’ﬁél‘& the comment guoted beneath the chapter heafl 8 W.e]l
justified. Remembering Gauss, we shall denote the followmg series -

of theorems about, the congruenee notation by G.1, G.2, ete.

G.1: We find ¢ = b mod m if and only if ¢ and b have the same
remainder R, 0 £ R < m, when divided by m.
4 — b = km, with % an integer,

il

I

Proof: If @ = b mod m, s0 that

1%
Chapter 17 is & basic chapter.
111
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andifb =gm + R,0 < R <m,thena=b+km = (g+ Em+ R
has the same remainder as b, Conversely, if a=0m + R,
b=gn+ R O£ R<m,thena —b=(Q—cm, with) — g an
integer, hence a = b mod m.

17.2 Congruence modulo m is an equivalence relation.
Within a mathematical system there may be various rclations be-
tween the elements of the system. ¥ a,b,. .. are cloments of a mathe:
matical system .S, then we say that a relation E hetween the e]Qr:muts,
writlen aFb and read “u is E to 6" or written «¢Eh and road “a is
not ¥ {0 b,” is an equivalence relation if and only 1f I‘. satlsﬁes the
~ following requirements:

F.1: E is deferminative: for any two Llements\ a,b in S, either
a E b or aEh, but not both of these, RN

E.2: E is reflexive: aEa, for every elemrt ain 8.
E.3: E is symmelric: if ¢ E b, then b"E a, for all @b, in S.
E.4: Eisiransilive:if aE b and”é}'E ¢, then a¥e, for all a,b,c in 8.

If S is the sct of all integers,. ’then one of the most striking cxamples
of an equivalence relation,” ather than the ordinary equahtv is the
notion of congruence modhlo m.

G.2: Congruence\nodulo m is an equivalence re]atlon for
intcgers. AV

Praof: .'k By its very definition congruence is deif’rmmafwe
for the differénice @ — b of any two given integers ¢ and b either is or
is not a muitiple of m; or we may refer to G.1 and comment that either
a angs i\do have the same remainder R, 0 £ R < m, when divided by
2K oi‘ they do not have the same remamder

M E.2: Congruence is reflezive because for every integer a we bave
@ — a = (0)m, and 0 is an integer, hence @ = ¢ mod m.

E.3: Congruence is symmetric, for if e = b mod m so that
¢ — b = km, where k is an integer, then b — g = (— kym with —k
an integer, hence & = @ mod m.

E.4: Congruence is {ransilive, because ¢ = b, and b = ¢ mod m
imply @ — b = km and & — ¢ = Km, where k and K are integers;
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then by addition we find & — ¢ = (k + K)m with k + K an integer,
hence & = ¢ mod m. S e

Every equivalence relation of a set divides the set into mutually
exclusive classes of “equal” elements. In this case we see, from Gd
and G.2, that under congruence modulo m, all the integers are
 divided into exactly m classes, corresponding to the possible re-
mainders R = 0,1,....m — L, and we see that each “R_class” con-
tains infinitely many integers, namely, gm + R, where ¢ = 0
+1,42,... .

These classes are commonly called residue classes, where wé. are
using the word “‘residue” is the same sense as ‘‘remainder.”, Any set

of m numbers, one and only one from each residue classy poristitutes

a complete residue system. &0

o\

17.3. Addition and maultiplication of residne classes. We
shall define the “sum’” of the a-class, modulo ﬁi\,\and the b-class, mod
m, to be the residue class containing @ = b Similarly, we define the
“product” of the a-class and the b-cldss; ‘mod m, to be the class
containing ab, . '

When in a mathematical systenda new operation is defined, there
are two of its properties to be investigated and established before the
new operation can be regarded as very useful. .

First we must ask if thé dperation is “closed”’ by which we mean to
require that the result‘ef the operation be an element of the sysienl.

Secondly we musgt eheck whether the operation is “well defined” .

by which we meaf‘to refer to the particular equivalence relation E
being uged in the system and to require that if each of the elements on
which ¢ qnpe}htion is performed be replaced by an equivalent element
and thng)&ration be performed anew, then the second result must be
equixalent to the first result.
{For the operations with residue classes which we have defined
ab6ve, it is clear that both operations are sclosed”’—the result in each
case being a certain residue class. It is now necessary to show thai
thess operations are “well defined.”

Thus if ¢ is replaced by an “oqual’’ element A: i.e., any member of
the a-class; and if b is replaced by an “gqual” element B: ie., any
member of the b-class, it is necessary to chow that the definitions are
of such a nature that, the “sum” and “product” found by using @ and
b are “equal,” Tespectively, to the tcum” and “‘product” found by
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using 4 and B. Otherwise, the proposed definitions are uscless.

G.3: Addition and multiplicalion of residue classes modulo m,
defined by
{a-class) + (b-class) = {{a + b)-class),
{a-class)(b-class) = (ab-class),
are well defined.

Proof: We must show that if @ = A4, and b =B mod m, thémn
a+b=A-+B, and abh = AB mod m. By hypothesis weahave
a—A=knand b —B = Km, where £ and K are inLegcrs,\'vﬁhEnce
by addition we find (@ +b) — (4 + B) = (k + K)m, and since
k 4 K is an integer, it follows that ¢ 4 b = A + B modyity We may
write the equations resulting (rom the hypothegislin the form
a=A+kmn and b = B + Km, whence by malfiplication we find

ab = AB + AKm + kmB 4 kotdém,

ab — AB = (AK + kB 4 kdK)m,
and since AK + 2B 4 kmK is an integeif,‘\iL follows that ab = AB
mod m. Thus both addition and muylfiplication of residue classes
are well defined operations. o0

By way of illustraiion let us .gégi‘sider a complete residue system
modulo 5, with the corresponditg classes partly indicated as shown

below: £

0= ... ~M, —50,5 10, .. mod5
1= 5879, —4,1,6,11,...
=N.., —8,-3,2,7,12,...
B&T., ~T7,-2,3,8,13,...
=, —6,-1,4,9,14, .

Theorem 3 “implies that any member of the 2-class added to any
member6f the 4-class must give a result in the 1-class, for 2 + & =
6 = Lmod 5. Similarly, any member of the 2-class multiplied by any
meraber of the 4-class must give a result in the 3-class, for 2-4 = 8 =

3pdod 5. The complete addition and multiplication tables mod 5
are as follows:

+10 1 2 3 4 -]J0 1 2 3 4
010 1 2 3 4 0olo 0 0 ¢ O
111 2 3 4 9 1170 1 2 3 4
212 3 4 0 1 210 2 41 3
313 4 01 2 310 3 1 4 2
414 01 2 3 410 4 3 2 1
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As another exercise in the use of G.3 we seek the remainder when
gy = 9% 4+ (14)" is divided by 11. With the aid of the congruence
notation this problem, which would otherwise seem a fearsome one,
is easily solved. Yirst, 2 = 16 = 5 mod 11; then by G.3, 22 =
(2 =5 =3 mod 11; 2" = 984 = 3-4 = 12 = 1 mod 11; there-
for, 20 = (297 =17 =1 mod 11; hence, 27 = 278 =8 mod 11.
Secondly, (14} = 38 = 27 = 5 mod 11.  Finally, z = 2% + (14)° =¢
§43=13 =2 mod 11. As we have shown in G.1 this is just
another way of saying that there is an integer kso that z = 11E 52
and that the desired remainder is 2. We have avoided cqnipTetely
the actual computation of x and k and thisisa remarkabha"éain that
can be exploited in many ways. \\

17.4. Casting out nines. To introduce tl\is. dection we shall
establish a theorem [rom which the main Tesgl ol the section follow
readily. *\

Q"

~ G.4: Given the polynomial N )
f(il:) =ty + ﬁle—“ . + a.x”

where the caefficicnts are integersiand given that » and y arc integers
such that & = y mod m, then

.\,@)’ = f(y), mod m..

Proof: The result'in G.41sa corollary to G.3. Thusz =Y mod
m and G.3 togeLh’ei’impW that ¢ = y* mod m; from G.2 we have
o = ¢; mod ngyhence by G.3, a’ = aiy® mod m; symming With
respect: to 1, @mploying G.3, we find that flo) = fly) modm.

As an dwnediate application of G.4 we call prove the following
theorpm*

Gia: Any positive integer written to the base 10 is congruent to
the sum of its digits modulo 9.

_Progf:  If the polynomial f(x) in G4 is restricted by insisting that
0Sa <10, im0, ,n—1;0<a, <105 then F = f(10) is a
suifable way of representing any desired positive integer. If in G.4
wetakem — 0,  — 10, andy = 1, we havel' = F(10) = f(1) mod 9;
__hut fO) = ay +a, + ... + a, is the sum of the digits of F, 80 this
completes the proof. _ g

By repeatedly applying G.4 we may find the least positive residue
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RofFmod 9,s0that F = Rmod 9 and 0 = R < 9. For example,
by G.5, 3275 =3 +2 4+ 7 + 5 = 17; then applying G.5 again, we
find 17 = 1 4+ 7 = 8; hence by the transitive property in G.2, we
know 3275 = 8 mod 9. Actually part of this work is superfluous
since the 2 4 7 oceurring in the first step is a multiple of 9 and may
be “cast out” immediately.

By properly interpreting G.3, G.4, G.5, we have at hand the results
frequently tanght (without proof) in elementary school arithmetﬁ,
under the name “casting out nines,” as a check on operatipfiy,with
integers. N\

First, for each number F used in a problem we com]_;igf:-é its least
positive residue ' mod 9 by repeated use of G.5 and easting out of
nines. Next, the assigned operations are performed on the given
integers F,G,H, etc., until the result X is obtdided. Then the same
operations are pcrformed on F' G' H', ete. unt@ the result X7 is found.
Now as G.3 and G.4 show, if all the compqtatxons are corr ectiy per-
formed, we must find X = X’ mod 9.,

Conversely, however, if X = X/ mod 9 it does not follow that the
answer X s correct (although thigierroneous conclusion is sometimes
taught)}, for it is clear from thg Congruence point of view that any
number of errars mvo]\«mgmu]tlples of 9 may have been made, and
that these errors will escdpe the supposed check. Thus the casting
out of nines affords Og\lg.a’ partial check on the accuracy of arithmetl-
cal calculations; it will'detect errors if the errors are not multiples of 9.

This method gf ‘ehecking is illustrated in the following problems:

3275)= 8 mod 9 1635 = 6 mod 9
WN6TH = 1 173 = 2
R\ 75650 8 9919 = 1
) N 22925 partial 325 = 1
Y 19650 check 617 = 5
2213900 = 8 6=12669 15=6

partial check

If the integers are expressed in the base & and if the operations
are carried out in that base, then it follows by the same argaments as
used above withm =b — 1, g = b, y = 1, that a partial check on
the operations may be obl:amed by *“casting out (b — 1)’s.” The



Seclion 4 _ CASTING OUT NINz$ = 117

following examples illustrate operations in the base “6” checked by
“casting out fives:”’

2911 = 2mod 5 1534 = 3 mod 5
531 = 4 152 = 3
3211 12=3 5515 = 1
14033 325 = 0
24455 / partial 5= 0
3033441 = 3 check 9=13332 1l=2
A L3 A
partial check O\
'\
EXERCISES ' G\

T
< R

£x. 174, If (am) = d and A = a mod m, show that (Afmy= d. State
this result in terms of residue classes. \%

Ex. 17.2. Construct addition and multiplication iables for the residue classes
mod 6. Compare the addition table mod 6 wﬂgthk addition table mod 5
(given in 17.3); conlrast the multiplication {able mod 6 with the mufti-
plication table mod 3. Y, .

Ex. 17.3. ¥ind the remainder when 3% ifidivided by 23.

ex. 17.4. Prove that My = 257 — 1isidivisible by 223.

£x. 17.5. Prove that an integer is Qivisible by 3, or by 9, if and only if

~ the sum of its digits is divigilleby 3, or by 9, respectively.

EX. #7.6. Using the notal;iﬁih,\in G.4 and 6.5, prove that an integer
F = §(10) is divisible by'11'if and only if f(— 1) the alternating sum of its
digits, is divisible By\11.

EX. 17.7. Show thaf’a representation of an integer F in the base *1000,”

“say F = g(10{0); can be obtained from. the usual Tepresentation in 1the

base “10,gay F = (10}, by grouping the digits of the latter repre-

sentation 1 suitable triplets. Prove that F o divisble by 7. . o 13

if and only if the alternating sum g(—1) is divisible by 7, 11, or 13,
M1‘!r‘:E'ﬁel:ti\rcly.

BX 478, Apply the tests of EX. 17,5, ex 7.6, £x. 17.7, to the integer
847,963,207, ' i

EX. 17.9. Show that if a is odd, then @™ =1 mod 2*%. :

¥X. 17.10. Compute X = (4353) - 1734 and check (partialiy!) by casting
out nines.

The following exercises use terms defined in Chapter 11. Let m.be a
fixed positive integer and 1, an integer. Let R; indicale & transformation of
‘he points p of a circle S in which the circle is rotated about its center through
an angle whose mensure in degrees is #(360)/m.
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Ex. {744, Understanding that one revolution is represented by 360
degrees, show that R, = R; if and only if i = j mod m.

ex. 17.12. Show that R,R, = R, if and only if { + j = ¢ mod m.

EX. 17.43. Prove that the set G, of all rotations B; iz a transformation
group (called the eyclic group of order m).

ux. 17.14. Show that G,, can be represented by m rotations and that the
multipiication table for G, can be represented by the addition table for

residue classes modulo m. o\
R\
Oy
.‘\EXQ o
r 4
b 3
e
"4
N\
4 \'
€
o)
OV
o\ d
‘:s:;%
N
s\‘gz
N
N\
N

:\ »
A\ 4

\ 3

{\)\v/

2.3
\Y
\%,j
\
.\}‘:‘w
N\



B Some derive the same sort of stumulus
from & lechnical monegraph as ofhers find in
o detective novel—lo which, in fact, i may
bear some sort of esoleric resemblance. It s
all @ question of taste, and taste is u thing
which no one person can decide for another.

—R. CURLE

cuapter 18°

18.1. The restricted cancellation la}}\f."x For the ordinary iute-
gers we know that if @ # 0, then ab_=\ae implies b == ¢, hence “can-
eellation” or the “cancellation ]awf«”is'vaﬁd for all non-zero integers.

For residue classes mod m, itfié}ﬁatural %o ask: “If @ is not in the
O-class, docs it follow frome@h= ac mod m, that b = ¢ mod m?”

Au immediale answe,tz"’af “Np1” is provided by the following
example: ™

2)(1) = (2)(3).600d 4 with 2 5 0 mod 4 and yet 1 # 3 mod 4.

As the neareshSabstitute for this anomaly we have the following

theorem: (%

' M
G.6: \mb = g mod m, d= (a‘m)’ m = mld., thenb=¢ mod -

R“{E;f ¥ By hypothesis with ab — a¢ = km, d = {aymn), m = mad,
& 'ud, we find ai(b — ¢) = k. But since (gmy) = 1, 18 follows
thet k = Ka,, whence b — ¢ = Kmy and therefore b = ¢ mod My

Corollary: The cancellation law mod m is valid for a-classes for
which (a,m) = 1.

Proof: In G.6, if (em) = 1, then m =7 It only remains to
prove {as in rx. §7.4) that if (am) =1, then every member A of the

£
Chapter 13 is a basic chapter.
e
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a-class has the property (4,m) = 1. But if A = a mod m, then
A =a+km. Let (Am) = (¢ 4 km,m) = d; then d divides m and
also divides & -+ km, hence d dividés a; but this implies that d divides
{a;m} = 1, and hence d = 1.

Conversely, if (¢,m) = d, where 1 < d < m, then it is possible to
find a case where the cancellation law fails. Torif g = tyd, m = md,
consider how day = d(ey +m,) mod m and d £ 0 mod m, yet
@, % ¢y + mimod m; because if a; = @, 4+ my mod m, we would Kave
my = 0 mod m; but m cannot be a divisor of m,, for with d, » I'we
have 0 <m = m/d < m. AN\
18.2. Various residue systems. As we showed jfWl'2 there are
exactly m residue classes under congruence modulo‘m, and any set
of m integers, one dand only one from each residie ‘clase, constitntes,
by definition, a complele residue system. WV

IT the integers a1,2,. . ., 2, of a comp]ete'\feg‘ldue system also salisfy
the added condition 0 < z; < m, weshave what is called a least
posilive residue system. "

If mis odd and 0 < [2:] < [mY2], we have an absolulely least
residue system: il m is even, we.modify this definition by allowing
~+-m/2, but deleting —m/2. ~3*

Thus if m = 6: <"
a complete resid{?:&ygtem is 3,14,5,6,7.8;
the least positive'system is 0,1,2,3,4,5;

the absolutely\Jéast system ig —2,—1,0,1,2,3.

A reduced 1, sid\ue system contains, by definition, just those members
of a completé-residue system for which the cancellation law is valid.
Henee by (e corollary to G.6 and by the definition of ¢(m) it follows
that alreduced residue system contains exactly ¢(m) classes, deter-
mired by integers a for which (a,m) = 1.

For example, when m = 6, a reduced residue system containg just
iwo classes represented, say, by 1 and 5.

This relation between the Fuler phi-function and the validity of the
cancellation law for congruence leads us naturally to the next section.

£

18.3.. Another development of the formula for ¢(n). In this
section we derive the formula for ¢(n) in a way very different from
that employed in Chapter 16 and involving an instructive use of the
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concepts of complete and reduced residue systems. We begin with a
series of six lemmas.

L1: If (mp) = Land if rure,. . fm and 51,8, . .8, are complete
residue systems mod m and mod n, respectively, then the set
{nr, -+ ms;] is a sel of mn integers forming a complete residue system
mod mi.

Proof: (A) The set fnr; -+ ms;} does contain mn integers, for\
there are m choices for i and n choices for Je

(B} We must show that no two of these numbers are congfughit
mwod mn. Supposc nri -+ ms; = N 4 ms; mod mn. Then it follows
that nrs = nr mod. m; but since (m,n) = 1, We may use G.-to write
r; = r, mod m; but since the r’'s form a complele residue ystem mod m,
f follows that § — k. Similatly, we have ms; = msymod n, whence
s; =38, mod n, whenee j = L \

Since parts (A) and (B) fulfill the two requiréments for a complete
residue system mod mn, the proof of L.l,isfeﬁmplete.

For example, if m = 3,11 = 0, 12 = Wh'= 2;andifn = 4, 85 = 0,
sg=1, 53 = 2, 5, = 3; then in lexicogtaphic order the integers of the
set {nr; -+ ms;) arve as follows: A\ '

0. 3. 6 9 4 mi10, 13, 8 1L, 14 17
and theze are readily chg;c{ied as forming a complete residue system
mod 12, albeit not a Q{st ipositive residue systent.

L2t If ()1 and if both (rnm) = 1 and (sn) =1, then
(nr + ms,mn) AU .

Proof: be? (nr + ms,mn) = d and let p be a prime dividing d.
By the Frndamenial Lemma in 6.1 since p divides mn, p must divide,
say, M3 ‘then p does not divide n, for (mm) =13 but p divides
m'\‘il ms and hence divides nr; however, not being a divisor of n,p -
Sistst divide r; hence p divides (r,m) = 13 but this is a contradiction.
It must be that d has no prime diViSors; in other words, d = 1.

L3: If (mn) =1 and (amn) = 1, then a =nr -+ ms where
(rm) = 1and (s,n) = L.
Proof: Since (m.,n) = 1 there exist integers z and ¥ such that

1 = mz -+ ny; hence there exist Integers ' = ay and 8 = a¥» such that
@ = nr 4 ms. Suppose (r;m) = d; then since d divides both r and m
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it follows that d divides a; hence d divides (a¢,mn)= 1; hence d = 1.
Similarly, we may show (s,n) = 1.

L.4: If (m.n) =1 and if ryrs,. . rgem and su,8s,. . .,85m aTe re-
duced residue systems mod m and mod n, respectively, then the set
{nry - ms;} is a set of ¢(m)¢(n) integers forming a reduced residue
system mod mn.

Proof: (A) There are ¢{m)¢(n) integers in the set {nr; + ms;} lon,
there are ¢(m) choices for i and ¢(rn) choices for J. .

(B) No two of the integers in the set {nr; + ms;} are Qo@g,?ru\cnt
mod mn; for each of the reduced residue systems is part of a wemplete
residue system; and the property in question has beefi Proved for

complete residue systems in 1..1. R4

(C) Each integer nr; + ms; is relatively prime townn, for since the
r's and s’s form reduced residue systems weshave (r,m) = 1 and
{(8;n) = 1; and the recuired result follows“ﬁ\érh L.2.

(D) Every integer @ relatively primexe mn occurs in one of the
classes represented by some nr; - msj; for this is the implication of
L.3 and Ex. 17.1. ' ANV

Then (A),(B),(C),(D) togethershow that the ¢(m)¢(n) integers of
the set {nr; + ms;} constitutedan entire reduced residue system
mod mn. g

For example, if m =, 3, = Lre=2;andifn =4,8, =1,8=3;
then in lexicographic’o}dkr the integers of the set {nr; + ms;} are as
follows: 7, 13, 11, 17,3 we note that 13 = 1 and 17 = 5 mod 12, it is
easy to check thatwe have here a reduced residue systern mod 12.

L5: If (m,k)" = 1, then ¢(mn) = d{m)e(n).

Prooj N\ A reduced residue system mod mn contains exactly
d(mphiittegers; but by L.4, if (m,n) = 1, a reduced residue system
IQ;?‘ mn contains ¢(m)e(n) integers; hence if (m.n) = 1, we have
Gmn) = ¢(m)p(n).

The important point about the proof just given is that it is entirely
independent of a prieri knowledge of a formula for ¢(n). Hence the
property expressed by 1.5, usually described as the “multiplicative
property,” can be put to use as part of an entirely different derivation
of the formula for ¢(n) originally developed in Chapter 16.

1.6: If p is a prime, then ¢(p% = p2 — pot.
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Proof: The proof is made by the simple process of counting the
positive integers less than p* and relatively prime to p® The integers
Esuch that 1 = k £ p® and such that (k,p?) > 1 must of necessity
be multiples of p, so they may be listed as follows: p.2p.3p,.. .,
(pe-t = Dp.(p=Hp = p% hence they are p** in number. Al other
numbers x with 1 £ z < p® are p* — p? ! in number and have the
property (2,p") = 1; thus we have shown that ¢(p®) = p® — peL

Theorem: If n > 1 is written In standard [orm as O

n = p1opee. . e A\

'\

—1 pz-—l) (p;;—l) O
(h Y B A ) e
o e = (P 1 Q

Proof: Since pi™,pa®s,. . .,Ds"F involve distinst\piimes, we apply
L.5 repeatedly to see that O
o) = P02 . #HPD-
To each $(p:®) we apply L6 to find P \%

T [ a2 .= \ ¢ a. i ]_
'i’(ps s) = p; L— p3»1“= D: ‘(p_pi )

Then the given formula fol]'ow:s.' Ymmediately by substituting these
regults for i = 1,2,.. ..k, aQ‘d vearranging the product in an obvious
way. )

A\

8.4, The Eulqr-{]i}érmat theorems.

MY i

Lemma: Afarore,. . orse form a reduced residue system mod m
and if (@l ¥ 1, then ar,ars,. . -, 0@rs(m also form a reduced residue
system gied m.

‘P "OUf (A) There are ¢(m) numbers in the set @ru@rs,. . @ s(m-
(B) Each ar; is relatively prime to 7, for from (rom) = 1 and
&,m) = 1 it follows that (er;m) =1 by BX. 5.6. :

(C) No two distinct ar; and ar, are congraent mod m, for from
#r; = ary mod m, since (gm) =1, it would follow from .6 Lhat
Pi =7, mod m; but since the r’s form 2 reduced residue syslem
mod m, the last congruence can hold onlyif i = k.

The proof is now complete, for (A),(B),(C) together show that
ArLars, . . arem satisfy all the requirements 1o form a reduced
residue system mod m.
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G.7: Euler’s theorem: If {am) = 1, then a*™ = 1 mod m.

Proof: Let ri,re,...,Fotm be a reduced residue system mod m.
Since {a,m) = 1, it follows from the Lemma above that arpar,. ..,
a4 18 also a reduced residue system mod m. Therelore each ar; is
congruent mod m to one and only one r;. Multiplying these congru-
ences together using G.3, we find upon rearranging the r's on lhe
right in nafural order that N\

GRS L Paimy = Pie. . Temy mod m. A
Since {r,m) =1, we may cmploy G 6 repeatedly tQ *gancel”
FiFs,. . . Paimy and find 4% = 1 mod m.

For example, since ¢(9) = 6 with 1,2,4,5,7, 8 ~eaéh relatively.
prime to 9, it follows that '

1"1“—25—4“—55—-75=85mod9

Corollary: Fermat's theorem: If pis’a prime, then for any
" integer a, we have ¢? = a mod p. R

Proof: Since all integers « such that %5 0 mod p satisfy (z,p) = 1
and since ¢(p) = p — 1, it followsdyom G.7 that for these z we have
z*~' = 1 mod p. Multiplying, cas:h side by x, we find 27 = & mod p.
But this latter congruence is sa,tlsﬁed also by 2 = 0 mod p, hence the
proof is complete, ~

TFor example, since Z\S a prime, it follows that 17=1, 2" =2,
37 =3, 4 =4, 57 &5/6" = 6, 77 = 7, mod 7. Sinilarly, we know
1) =1, (113)ﬁ , mod 7, etc,

:EXERCISES

EX. MQ Hlustrate 1.1 and L4withm=3andn=5.
Ex. 482, Find the absolutely least residue systems mod 3 and mod 5.
\Show that “u and » of the same, or different, parity” is equivalent to
\m ““u=up oru# v, mod 2.” Show that in every primitive Pythagorean
triplet one and only one member is a multiple of 3; of 4; —— of 5.
EX. 8.3. Use Fermat's theorem to show that every prime, except 2 and 5,
divides Infinitely many of the integers: 9,99,999,9999,.
Ex. 18.4. Show that for every integer n, the mumber 2 — n is divisible
by 2730.
ex. 18.5. Study the binomial coefFicient pl/(p — r)lr] where p is a prime
and 0 < r < p, and prove directly that
e+ 5?=a?+ b’ mod p
(but don't let any freshmen observe this heresy!).
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gx. 18.6. Give an independent proof of Fermat's theorem using EX. 18.5
and mathemaltical induetion. -

gx. 18.7. Define Carmichael’s lambda-function as tollows: M1} = (L),
A2 = ¢(2), ML) = ¢(d); N2P) = 3629, a>2; Mp®) = ¢(p°) if
p is an odd prime; apd if m is wrilten in stapdard form as m =
2p,%pa®t. .. Pr™ where p; is an odd prime, then A(m) = [A2), Ap1™),
Ape®), .. Mp 5], where the brackets indicate least common multi-
ple. Use px. 17.9 and G.7 to prove that if (am) = 1, then g™ =1

mod m. "\
x. 18.8. Show that A(m) is a divisor of ¢(m). Compare Am) and ${m)
when m = 26+3-5+7-17-19. ¢\

For the following exercises define an “ghstract group” to'cqnsi\st of a
sob G of elements a,b, . . ., with an equivalence relation and an ofdered binary
operation ab = ¢ which s () closed, (2) associative, (3) ba apridentity, and
{4) has for each element an inverse. Note that such a gystept diffess from the
“transformation group” defined in Chapler 11, for\jlie elements are nob
required to be transformations, the operation is 0o ,%c’cessaﬁly that of form-

‘ing the product of $wo transformations, and-ib 8 therefore necessary to
postulate {or with examples, to prove), not Antematically have, the associa-
iive properly. o

N e

Ex. 189, Show that all integers forth a group under the operation of
addition, N\

ex. 18.40. Show that all the(gosidue classes mod m form a group under
the operation of addition of residue classes. Compare with Ex. 17.14.

_ EX. 1844, Show that %ilMhe residue classes of a reduced residue system
mod m form a_group under the operation of multiplication of residue
classes. A« 5

EX. 18.12. Let.S-be the residue classes of a reduced residuc system mod m.
For c@%‘clasg ia S define a transformation T, of 8 as follows: aT,=ar
mod/m Show that the set G of all ¢{m) transformations Tr forms a
tF?ﬁSfOHnation group. Compare G with the group in EX. 18.44.

EX{18.13. Let 8 be the sel of all residue classes mod m. Define a trans-

Y formation T(rb) of S as follows: aT(rh) =+ mod m, where

Gmy=1,1<r<m0Sb<m Show thas the set G of all mep(m}

transformations T(r,b} forms a transformation group-



W Excellence is evident in full and adequate
solutions to problems; for whatsoever theorem
solves the most complicated problem of the
kind, does with a due reduction reach all ihe
subordinele cases. —E. HALLEY

cuApTER 19"

LINEAR CONGRUENCES

’ {"
~\

19.1 Theory of congruences. Let ¢
F(r) = agz™ + a4 ,~+an, nx=l,

be a polynomial with integers~B8 coefficients and with @ # 0

mod m; then F{z) = 0 mod m wﬂl‘be gaid to be a congrucnce of degree

it mod m.

If there exists an mte,gu\r such that F(z;) = 0 mod m, it would
be natural to define :cl\t@be a solution of the congruence. However,
our earlier theoremgshow that il X; is any integer such that X, = @1
mod m, then WO &lso have F {X;) = 0 mod m. Thus if one solution
can be found'\fhen mfimtely many others can be obtained, but
related to.edolt other in an obvious manner. To avoid this trivial
duphcau::h\we therefore agree to speak in terms of residue classes
and wéidefine the z-residue class to be a solution of F (x} = 0 mod m
if, oam;l on}y if (1) = 0 mod m.

iy @1 and @ arc solutions of F(x) = 0 mod m, they will be con-
sidered as distinct solutions if and only if 2, . mod m. Hence by
the number of solutions of a congruence mod m we shall mean the
maximum number of solutions incongruent in pairs.

According to this definition there cannot be more than m solutions
for any given congruence, since there are only m different residue

*Chapter 19 is a basic chapter except for sections 19.4 and 19.5 which are sup-
plementary.

126
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casses to be considered. If m i8 small, this implies that all the
colutions may be found by direct substitution. °

In elementary algebra courses most of our readers will have
studied, at least in an introductory way, the “theory of equations”
of the complex number system, beginning with linear equations and
progressing to quadratics, cubics, etc. It is therefore matural that
here we propose a study of the “theory of congruences,” starting

with the linear case and continuing to congruences of higher degreey

Many points of difference between the two theories will appear.

As explained above, for a congruence a “golution’” will mean’a
“residue class,” 5o each solution will actually involve inﬁnitply:‘many
integers; and “‘distinct” solutions are defined to be “ineengruent”
solutions. In cortrast a solution of a polynomial quafl';ion over the
complex number system is individual; and distidCt solutions are
mnequal solutions. However, the wider view ofan “equivalence
relation” which we have been emphasizingymakes this situation
readily understandable, for congruence of Integers mod m and
equality of complex numbers are two djﬁierént equivalence relations:
the first has infinitcly many element&id each equivalence class, the
seconrd has only one clement in cadh équivalcﬂce class,

A congruence may have no solittion. For cxample, witness «* = 3
mod 3, for trying in turn cach of the five possibilities: 0,1,2.3,4, we
fail to find a solution. TiCentrast, over the complex number system,
overy polynomial cquiation with cocfficients in the system has a
solution within the &ystem. :

Again, a congriience may have more distinct golutions than its
degree. Congidér the example 2* = 1 mod § which is of degree 2,
but has fefi) incongruent sclutions: 1,3,5,7. In contrast, a poly-
nomial qﬁﬁation over the complex number system of degree n has
at mask n distinct solutions,

N\

¢ But the most striking difference is that we ghall be able to give an

explicit method for solving any congrueace of any degree and any
modulus m. (Of course, as explained above, one such “method”
would be to substitute, in turn, each of the integers of a complete
residue system, say, 0,1,2,....m — 1, and while thig metbod i8 com-
plete in a finite number of steps, it is not practical for large values of
m.) In contrast, no comparable method can he found in the theory
O]fl equalions for complex mumbers for equations of degree greater
than 4, -
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19.2. Linear congruences in one unknown. For emphasis we
repeat the remarks above that in the following theorems the words
“unique solution” must be interpreted carefully, not to mean one
integer, but to mean one residue class; so that there may be two
solutions, unequal in the usual sense, but “equal” in the sense of
being “congruent.” Thus 2z = 1 mod 5 is said to have the “unique”
solution 3; although 8 and 13 are other solutions, they are not counted
as different, because each of these is congruent to 3 mod 5. Q4

b G8: I (o m) = 1, then ax = b mod m has a unique solutmn

Proof:  For a first proof, we appeal to Fuler's theorems G+ 7 and to
G.3 and multiply each side of the given congruence by a®m—t to
find that we must have z = ba#™—1 mod m. &

For a second proof, we return to the FEuclid alrrdri‘rhrn, for since
{(e;m} = 1, we know there exist integers s and tstich thatas +-mi =1
and then a(sb) +m(th) = b. Hence we findthat z = ab is a solution
of the given congruence, for we hay€)dz — b = (—tb)ym which
implies @z = b mod m. If X is any obhér solution, so that aX = b

‘mod m, then we see by G.2 that e X.<2 s mod m; then since (a, m) =1,
we may apply G.6 to see that X =z mod m, so the solution is
unique, N\

Of course the main ideapf the first proof given above is to pro-
duce explicitly an mtegcr\ A such that ¢A = 1 mod m, for then,
when multiplied by A, ‘the congruence az = b mod m will take the
solved form ¢ = Af'mod m. The process is comparable to that used
in solving a lmeax\cquatlon and A is called a “reciprocal” or “inverse”
of a; howeven\A must nof be written in the form 1/a, for we are
dealing steictty with integers. From FEuler’s theorem an explicit
value fat\A is a*(">~1; but often in problems a suilable value of A
can be “found by inspection (note that the “uniqueness featurc” of
’G*s Buarantees that a*™—1 = A mod m for any A such that a4 =1
mad m).

The second method of prool shows that our congruence probiem
is equivalent to the Diophantine equation ax + my = b studied in
12.1 and suggests an eﬂtlrely new method of solving the Diophantine
equation when (a,m) =

For example, let ug solve 172 + 11y = 16 by the congrucnce
method. Considered mod 11 this problem becomes 6z = 5 mod 11.
We then seek A so that 64 = 1 mod 11: by Euler’s theorem we



Section 2 LINEAR CONGRUENCES iIN ONE UNKNOWN s 129

know, since ${11) = 106, that A = 6° mod 11; however, by inspection,
we can see immediately that A = 2 mod 11, Then = 2-5=10
mod 11, or © = 10 + 11k, where £ is any integer. Substituting this
value of z and solving for y we {ind that 11y = 16 — 170 — 17(11k),
whenee y = —14 — 17k, which completes the solution. .

In general, using the first proof of G.8, we can write the solution
of az + my = b, with (a,m) = 1, explicitly, as Tollows:

¢ = battm—1 - km, vy = —bla*"™ — 1)/m — ka;
or, more conveniently, il A is any solution of a4 = 1 mod m, we may
write the solution as follows: RAY.
x = bA - km, y= —blad — 1/m — ka, | O

where, in both cases, & is an arbitrary integral parameter.{ ™%

G8.1: Il {am) =d, thenaz=Db mod m has no'sojhiti.on when d
is not a divisor of b; but if d divides b, there are axaotly d solutions.

Proof: Since the congruence 18 equivalent to az + mk =05 in
inlegers x and k, the existence of solutions) and k requires that

.

d = (¢,m) divide b. Suppose then that fhis requirement is gatisfied
and let @ = ad, m = mud, b = bhd; #hien’ according to G.6 the con-
gruence ax = h mod m reduces 1o @t'= by mod m.. But (amu) = 1,
hence G.8 is applicable and hertice this new congruence has a unigue
solution mod my, say X = st mod my, 10 be explicit. Then
X, X+m, X+ 2myl0, X+ (d — 1)m, make up exactly d
_solutions mod m of ap ='b mod m. Any other solution must have
the form X - sm, and'must be congruent mod m to one of the solu-
tions Nsted; for Afiwe sct s = gd +71, 0 < r < d, then X + smy =
X (gd + =X +gm+rm = X + rmymod m, and X +rma
is in the HS’& The solutions listed are distinct mod m, for they are of
the form'X\+ ran, where the r;form a complete residue system mod d.
T‘l,en'i.if"X +rmy = X+ ram mod m, we find by G.3 that
r:"'mh'_‘& rqm; mod m and then by G.6 that r; = r; mod d, hence
A .
For example, we solve 39z = 65 mod 52 as follows: since @ = 39,
m =52, (am) = 13, b = 65 = 5-13, there must be 13 distinct solu-
tions; the “reduced” congruence is 3¢ =5 mod 4, with the unique
solution 2 = 3 mod 4: bence z = 3, 7, 11, 15, 19, 23, 97, 31, 35, 39,
43, 47, 51, are the 13 distinet solutions of ihe original congraence.
As a related example, we note that 30 == 64 mod 52 has no golu-

tion, since 64 is not a multiple of 13.
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19.3 The Chinese remainder theorem. Problems of the kind
which can be solved by the following theorem were solved by the
Chinese in ancient times, and in honor of these early contributions
we term our theorem the “Chinese remaindcr theorem,” although
the notion of congruence enables us to state the theorem and
solution and make the proof in a much more condensed and con-
venient form than was available to these ancients.

O\
G.9: I myms,. .. my are given meoduli, relatively prime in pary,
then the system of linear congruences (\N
r=amodm, x=gagmodms, ..., = a,modm:

where a; are given remainders, has a unique solutipnvpdodulo m,
where m = myms. . .m,. 7

s b

&é
Proof: If we define M, by requiring m:Ma=\g:, then since the
m; arc relatively prime in pairs, it follows that (M.m.) = 1, and
hence by G.§ there exists an integer z; such dbat Mz; = 1 mod m;,
for i =12 ..k Then a solution # of j;%)e given system of con-
gruences is provided by QO
Eoa)
z = y Mza,.
i\
For if we substitute z in any of ‘the given congruences, say the ith
congruence, we find that A%, Yor every j 3 i, contains m: as a {actor
8o that M; = 0 mod {3 i; but Mix: = 1 mod m;, hence @ = a
mod m;, as required. "\

If X js another, golution, 1hen X = ¢: mod my, for § = 1,2,....k;
then by G.2, X&'2 mod my, for i =12, ..k Since the m; are
relatively prifi¢“in pairs, we may use Ex. 79.3 of this chapter to
conclude that X = z mod m = mm,. . .My, Wwhich completes the
proof of 0.

J us\t for fun let’s do the “Chinese remaining problem.”
¢ Avband of 17 pirates upon dividing their doubloons in equal
portions found 3 eoins remaining which they agreed they ought to
give to their Chinese cook, Wun Tu. But 6 of the pirates were killed
in a brawl, and now when the total fortune was divided cqually
among them, there were 4 coins left over which they considered
giving to Wan Tu. Ina shipwreck that followed only 6 of the pirates,
the coins, and the cook were saved; this time an equal division left a
remainder of 5 coins for the cook. Wearying of his masters’ nig-
gardliness, Wun Tu took advantage of his culinary position to concoct
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a potent mushroom stew so that the entire fortune in doubloons

‘became his own. With the aid of the Chinese remainder theorem

we are to find the two smallest numbers of coins which may have
heen the fortune of the Chinese remaining. _

Stripped of ¢cmbellishment, our problem is to {ind the two smallest
positive solutions of the sysiem of congruences:

¢ =3modl], z=4modll, z=5mod®.
Since 17, 11, 6 are rvelatively prine in pairs, the theorem G.9 may.be\
applied. Here we have \

m = 17, M, = 66, 660, =—2¢, = 1L mod 17, 80 .@\&\3;
me = 11, My =102, 102z = 37: = 1 mod 11, “36';122 = 4;
M= 6. M, =187, 187z;= @ = 1 mod 6,5\ 80 23 = 1.
Then the complete solution is given by oN '
X =z + mi = Mz + Maaae + Mastack Fiamytal
(66)(8)(3) 4 (102)(4)(4) -+ (137)(11©) + (1Ty(11){6)
4151 + 11224 O
Quite symbolically, Wun Tu’s fortunawdepends upon multiples of
1122 (1. The desired solutions apd found by taking t= —3 and
{ = —2 with the results = Tﬁ:?:dﬁd 2 = 1907, respeciively.

i

W

I

19.4. Sysiems of n lin{};r congriaences in 1 unknowns. In
contrast Lo the syste stadied in 19.3 involving one unknown, but &
different moduli, we hr%w} study a system of n lincar congruences in n
unknowns, say, Ty . ., a all with the same modulus m. I we scb

A\
L= apnn + Guse 4 ... T Gip¥a — Cis

where the gy omd the ¢; are given integers with i,j = 1,2,....n, then
the S)'S‘p@\'%hich we propose to study may be indicated by
N L; = 0 mod m, i=12,....

AN : :
~Fwo such systems will be said to be equisalend if they have exactly
¢ same solutions.

GA0: IFL;/ = L; when j 5% k, but
Lyl = bily 4 balg - ... bl + buLom,

Where the b’s are integers, then it Bam) =L, the system L/ =0

mod m, { =1,2,....n, is equivalent to the system L; = 0 mod m,
'=12...n; but if (bm) > 1, the primed system may have
extraneous solutions which will not satisfy the original system.
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Proof: (A) Obviously each solution of the original system is a
solution of the primed system, for the only congruence which is
different is the kth one; and since by hypothesis L; = 0 mod m for
i =1,2,...,n, it follows by substitation that L,” = 0 mod m.

(B) Conversely, each solution of the primed system is a solution of
all the congruences of the original system except possibly the kth
one, because L; = L/ when i # k. For the same recason the con-
gruence L, = 0 mod m takes the simplified form b:L: = 0 modéh
Hence by G.6 if (bx,m) =1, we find that we must have L; = B, miod
m, so that the two systems are equivalent. But if bim) a1,
then b,L; = 0 mod m may be satisfied by having L, = ¢ (m1/d) mod m
for s=12,...,d — 1, as well as by having I, = 0 nied’m; such a
situation shows plainly that a solution of the primed system need not
be a solution of the original system and an atteémpt to replace the
original system by the primed system may, wheh (bs,m) > 1, intro-
duce extrancous solutions. <O

The suggestion is strong that by re@ée}ed application of G.10,
with suitable and cautious choice of the mullipliers b, we may be
able to replace a given system bya'li'equivalent syslem of the type

A = B; mod 1 0= 1.2,...,n

80, that the solutions, if amy ék'ist, may be found by applying €.8.
Since no sclutions can bedost by the methad, it is perhaps easier to
rely on a check by sulistitution to delete extraneous solutions than
it 1s to avoid the introduction of the extrancous solutions. Following
the terminology of the theory of equations we may designate such a
method as is prc}ﬁosed here as “climination by addition and subtrac-
tion.” TheJnéthod s illusteated in tho following example. (If the
method .s\\aérﬂs haphazard, the student who is acquainted with the
theory';bf determinants can substitute an explicit method and tests
for, the existence of solutions and the exclusion of extraneous solu-
tions, see Ex. {9.11))

Given Ly = 22 4+ 11y — 5 and L, = z -+ 3y, solve the system
L1 =0,L: =0, mod 15. '

To eliminate first 2 and then y we consider

Li=Ii—2Ly=5y — 5 and Ly = 3Ly — 5Ly = ~5x + 15.
By G.10 the system I,/ = 0, L, = 0, mod 15 is equivalent, to L, = 0,
Ly = 0, mod 15, because (1,15) = 1; but the system L/ = 0, L =0,
mod 15 may have solutions extraneous to those of the system Ly’ = 0,
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Ls = 0, mod 15, because (515) = 5> 1. Infact, L' =0 mod 15,
or 5y = 5 mod 15, has solutions y = 1,4,7,10,13; and Le" = 0 mod 13,
or 10z = 0 mod 15, has solutions = 0,3,6,9,12; so that the system
I/ =0,L/ =0, mod 15 has a grand total of 25 solutions {(pairing
each value of ¢ with each value of ¥). However, a check reveals that
only 5 of these solutions solve the original system, namely:

(@y) = (0,10); (3.4); (6,13); (9.7); (A2.1).
The theorcm G.10 gnarantees that this is the complete set of solu~
tions of the original problem.

N

4 ". \g

19.5. A cipher based on congruences. The ideas of $he pre-
ceding section bave been made the basis of an interesting, flexible,
and, in a certain sense, unbreakable cipher. A

To begin with we select for the modulus m any prime just a Jittle
larger than the number of letters in the alphabet required for the
messages. ‘Thus with the usual 26-letter En’g‘mh alphabet in mind,
we might sclect m = 29. o\

Then we adjoin to the alpbabet alswfficient mumber of useful
symbols so that we can establish_avane-to-one correspondence (C)
between residue classes mod m atghsymbols of the (enlarged) alpha-
bet. For example, to the alpliaihét A,B,...,Z we might adjoin the
symbols &, ., 3, supposingthat we have m = 99, and assign to these
“letters” the residue clagses 1,2,...,26 and 27,28,0, vespectively.
~ The purpose in chdosing a prime modulus i¢ to afford us a great

variety of ways to{choose n? integers &:; 80 that the system of con-

gruences N\% .

E)  ci=t + asrzt+ .- 4 dint, mod m, 1= 1,2,....n
will have s wnique solution for any selection of the ¢; (see BX. 19.1 1
for tl}eiéxact conditions), namely: :
(D N mi=daoy +dace .. T die.modm, i=12.. .0

N The integers a.; which are selected are said to form the enc:ipher-
ment-matriz; the integers di; which can be computed if the encl.pher-
ment-matrix is known, are said to form the decipherment-matriz.

A given message is enciphered in the following way: -

(D) it is divided into groups of n letters according to some plan
(P), perhaps just successive groups;
{2) the letters of a group are designated in order a8 £1,% . - -»¥= and
each is given its numerical equivalent according to the plan {);



134 « LINEAR CONGRUENCES Chapter 19

(3) using the agreed upon encipherment-matrix the values of
€1,62, -+ .,€n Are computed mod m from the congruences (&);

(4) the numerical values of CL8, . . by are replaced by their letter
equivalents according to the plan (€) and this group of n letters js -
one group of the enciphered message. '

A ciphered message is reduced to “clear” in the following waxy:
(1) the message is divided into successive groups ol » letters; the
letters of a group are designated in order as cics,. ...c, and &b
replaced by their numerical equivalents according to the plan'(C);
(2) using the computed decipherment-matrix the values of :{1,?1:2,\. .

. are computed mod m from the congruences (D); « M
(3) the numerical values of z,,7,. . ..z, are replaced My their letter
equivalents according to the plan (G); ¢o

(4) the various groups of n letters are arranged ji{proper position by
reversing the plan (P). O
~ For example, let us take m = 29 and the ‘gorrespondence (C) sug-
gested above; let us take n = 3 and the™ llowing congruences for
encipherment: X
6L =a + 53 -+ 65633
(E) Cz = 8.’1:1 + 2.:"3‘3' :{.;:"4:1':3,
€3 =92, + T + 3z;, mod 29.

Then if we follow the standdxd plan (P) a message such as HE DIED
becomes first (8,5,4)(9,“@1)" and encipbers by (E) as (28,3,3)(0,11,12)
so that the cipher mps}ﬂge is .CCPKL. -

If we solve the gystem of congruences (E) by the method in 19.4
' we obtain (see ¥ 019.12) the following formulas for decipherment:

,»\':.\"501 = 1361 + 17¢s + 19¢,,

) %"' T2 = 1de, + 28¢5 -+ Ges,
' \ Ts = 25¢; + 25¢; - des, mod 29,
mTh”S cipher is unbreakable in the following sense: even If the
Senemy” knows the method of encipherment, the correspoudence
(C), and the plan (P}, he has a poor chance of guessing the key
encipherment-matrix, because there exists a matrix of integers .
such that any message of only n lctters will, when enciphered by the
congruences based on that matrix, take the form eyco,. . .,c, Of the
cipher message which the “enemy” is trying to break.

For example, the correct decipherment of . CC by the congruences
(D) above is HED. But it is easy to find an cncipherment-matrix

*
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tor which the decipherment of . CC would be, say, TII. We would
lhave to chioose the a;; so that

(11}20 + alZB + 3135 = 23,

0‘,2120 + a228 + a235 = 3,

320 4 agd -+ a5 =3, mod 29,
and so that the new system (E’) would bave a unique solution (D).
One suitable choice is : :

= + Tz . Q"
(E) o = o+ Axe 4 20w, A
¢ = 2@, + 28, , mod 29. N

A\

Since in practice the value of n must be fairly smail, the almost
inevitable recursion of certain combinations of letters in ‘exdctly the
same position in the n-groups would, however, probébly aliow the
skilled eryptographer to break the cipher, particblarly il he had
several long messages of more than n fetters 10 \S@idy.

EXERCISES O

ex. 19.1. Solve 513¢ = —17 mod 11630
ux. 19.2. Solve 66¢ = 121 mod 737N
Ex. 19.9. If X = 2 mod r and if X== z mod s and if (r,8) = 1, prove that
X=zmodrs. By inductii);l establish Lhe result needed in the last step
of the proof of G.9. . )
Ex. 194, U X=gx mod\r@ﬁd if X = z mod s, prove that X = g mod [rs]
(see EX. 6.5). O :
#%. 19.5. 1l % — u o r and « = b mod 5, prove that o = bmod ().
kX 19.6  Tse m 9.4 and Ex. 19.5 to generalize G.9 to “The system
r=aq; n;oﬁ‘mf, i=12,....k has a solution if and only it (mam;)
divide?%“—- a; for ij=12,... .k if the solution exists, it is unirque
moduJony,ms, . . .,mi]”
Eﬁi%’(’.‘ Tind the least (wo positive integers with the remainders 2,32,
When divided by 3,5,7, respectively. (Sun-Tsu, first century.) A
EXY19.8. Tind & mumber having remainders 2,3,4.5, when d'i\rlded by
3,4,5,6, respectively, (Brahmegupta, seventh century.) (First apply
G.9 to the first three conditions.)
X, 19.9. Solve the [ollowing system, mod 29:
Zp — dy + = 3
2+ oy —IE 2,
g—y+2r=1
Ex. 19.10. Solve the system in Ex. 5.9, mod Z4.
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Ex: 19.44, This exercise is intended for students who are familiar with the
theory of determinants. Modify Cramer’s rule so that it will apply to
the solution of a system of n linear congruence in n unknowns, mod m;
and apply G.10 to prove that there will be a unigue solution of the system
when

(D!m) = (Allsm) = (AQQ,m) == [:Anmm) = L
where D is the determinant of the a; and where A;; is Lhe cofactor of
@ Apply G.8.1 to show that in general the number of solutions way
. vary from none to (Dm)™. \
EX. 79.12. Obtain the solution (D) mod 29 given in 19.5, and deglﬁhqr the

following cipher message: WV&VLJ, \":,\ “
« \J
# ’~:“ ’
>’
po W
AL
N
'X’\ w
¢*{
&)
s’s‘.‘:"
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which, as our knowledge insreases, we ¢re
continually discovering new and sometimes
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muay long remain concealed. £30.F. GAUSS
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cHAPTER 20° R

CONGRUENCES\OF HIGHER DEGREE

71

&

2.0'1- Pre},ili;i\{ary considerations, Let us now direct our alten-
tion. to o srtences of any degree. We will use the notation intro-
duced' in 9.1, letting '

ws: \ ' F(z) = ax” + aet 4 .. + an nzl
e 4 polynomial with integers as coeflicients and with ao 7 0 mod m;
then we will consider the congruence F(x) = 0 mod m.

_As explained in the previous lesson, when m is small, all the solu-
tions can be obtained by direct trial of integers from a complote
residue system mod m; and according to our agreement about distinct
solutions, there can never be more than m solutions. But our object

E]
Chapter 20 is a basic chapter.
137 .
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here is to obtain a method, more suitable than merc trial, when m
is large.

We must bear in mind that even if the given congruence is of
degree n, there may be more than n solutions; however, a later
theorem will show that this angmaly can arise only when the modulus
m is composife. Sl ST T

o preserve the continuity of the following chain of lheorems—
G.11, G.12, G.13, G.14—we shall present all the theorems. ant
proofs, and then begin an example in whose solution we can Uhastrate
all the theorems, e

™\

20.2. Reduction of the solution of congrlleneg‘g";’nod m to
the solution of congruences mod p* where plis‘a prime. Ip
this section we shall use the Chinese remainder theérem to prove the
following theorem: Y,

G.JI1: Ifm > 1is writien in standarglifsfm asm = P’ psTt
where p; is a prime and 1 < Di < p2 &\Y.. < p;, then the solution
of F(z) = 0 mod m depends upon 1hg solution of F(z) = 0 mod p:*,
fori=12... % a"

Proof:  Obviously, if () =0 mod m, then F(z) = 0 mod p;'i for
i =12,.. k;so every sqhition of the given congruence mod m is a
solution of the several gohgruences mod py*.

Conversely, suppose that all solutions of the congruences F(x) = 0

mod pi’i can be found. Let us suppose that integers 1, @, ... » &
have been found'é that

Fle) = »Qiﬁ}éd P’ F(xe) = 0 mod pets,. . . Fz;) = 0 mod pi
Then Sin\\ﬂé“ the ps, pi arve relatively prime in pairs, we are in 8
positidﬁ to apply the Chinese remainder theorem, G.9, and to find
an, integer = such that

\ ) z=x2mod D', x=mmod pife,..., x = x.mod ps™
Then since F(z) = F(z) = 0 mod p&s, for {= 1,2, .k, it follows
from ¥x. 19.3 that F () = 0 mod m. Moreover, G.9 asserts that the
2 which has just been found is unicee mod m.  Hence we have shown
that each distinet set of solutions T0.T2, . . .,&x of the system of several
congruences leads to a distinct solution of the given congruence
mod m. Thus if there are T incongruent, solations z; of F{x) = 0 mod
pi*i, then there will be T = T\T,. .. T, incongruent solutions z of
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F(z) = 0 mod m. It should be noted, that if any T; = 0, then, of
course, T == 0 so that there is no solution mod m.

90.3. Reduction of the solution of congruences mod p® to
solutions mod p. In this section we show that the solution of a
congruence mod. p°, where p is a prime and s > 1, can be reduced to
the solution of a congruence mod p**, hence by repeated applications
of this process the solution can be veduced to the solution of a con-
gruence mod p.

To carry out the next prooi we necd first to make a slight digressi6mi
and consider certain consequences of the binomial theorem of BX29%7.
We note that if @ and b are integers and if n is an integer, 7 g’.g, then
204y (a + ) =a"+ na™ % -+ 80, (a,b)
where Q,(¢,b) is an infeger, depending on n.a, and bagy

By repeated application of (20.1) we find thab i"n = 2, then
Fla+b) = aplat+-b)*+ala+b)" . .. -i—an_z(a‘—iftbzﬂ-aﬂ_l(a—l—b) +a,

= (qe” + @ma™ + ...+ o gl 1 @)
+ b{naa™" + (n — Daa®? -+ 20 + @}
4 B {aa(ab) + mQueiab) + .. A an2Qulab) ).

T.et us define a new function, F'(z)ptead “F-prime of «” and called
the “derivative of £(z),” derived {fom F(x) according to the following
formula: A
(20.2) F*{(x) = nage™*+ (r}ﬁ,\l)alrr;”—? 42t Gnn T =1

Tn terms of F'(x) we find that Fla + b) may be written
(20.3) P(a @b) = Fla) + bF/(a) + B0.
where @ = a0 @B aQn (@ b) + .. GaQa(a:b) ifnz 2
and Q=0 ilmm=1

For examg’l"g\,."F(x) =2 + 32+ 52+ 7,

& F'(x) = 6a*+ 6x -+ 5,
Fla %) = (2¢* + 3a2 4 3a + T 4 b(6a” + 6a -+ 5) + V0,

T the application which we shall make of (20.3) we shall not need
to know the exact value of Q, but merely that Q is an ineger.:

P4\

.(;']'2' If s > 1 the solution of F(z) =0 mod p*, where p Is a
prime, depends upon the solution of F(a) = 0 mod p*

Proof: We begin by observing that cach solution 2 of F (@) =0
mod p* is obviously a solution of F(z) = 0 med p*. Consequently
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all solations of F{z) = 0 mod p* must be included among* the solu-

tions of F(z) = 0 mod p*t. In other words, il # is a solution of

F(z) = 0 mod p°, it must be possible for us to find a solution X of

F(z) = 0 mod p*! so that ¢ = X mod p™*; i.¢c., @ must have the
form & = X + {p*~! for a suitably chosen integer {.

We will suppose then that all solutions X of F(z) = 0 mod p™!
have been found and we shall check each of these, in turn, to see if
one or more integers { can be found so that x = X 4 {p** will be &
golution of F(z) = 0 mod p*, for we are certain {rom the abowe is-
cussion that this is the only way solutions of the latfer gengruence
can arise. G\

In the attempt to find suitable values of ¢ we may use (20.3) for -
this equation allows us to write (v

/N

F(@) =F(X + ip*-) = F(X) + p=F' O &(p )0
where (} is an integer. Since we are seekipgx}niutions zof Flx) =10
mod p*, and since for § >> 1 it is clear that(p™*)* = 0 mod p*, we are
led to the following restriction ou £1  \\" :

F(X) + tpF'(Xh= 0 mod p.
However, by hypothesis F(X) =0 mod p*—1 so there exists an integer
M so that F(X) = Mp=—1. Therefore the congruence restriction on {
may be replaced by the folldwing congruence mod p:
(20.4) MSE IF'(X) = 0 mod p.
To the congruence(20.4) we may apply all the results of G.8.1, a3
follows: O
there is opessslution { if F/(X) £ 0 mod p;
there ig'np-solution { if F'(X) = 0 mod p and M # 0 mod p;
thexg(ar€ p solutions I if F/(X) = 0 mod p and M = 0 mod p.
Using, these results we have at hand a definite method when s > 1of
dijs(@\féring every possible solution of F(z) = 0 mod p° if we have
¢previously found every soluiion of F(z) = 0 mod p*~%, so this con
pletes the proof of G.12.

20.4. Modulop, a prime, only congruences of degree less than
p need ]:Ee cousidered. By repeated application of G.12, w¢ gee
that solving F{z) = 0 mod p* reduces to solving F{z) =0 mod p-

*However, the phrase “included among’ must be interpreted carefaily; -l;hcrg
may be more solutions mod p* than mod p*L, because integers congruent M2
p ! may be incongruent mod p*.



Saction 5 " LAGRANGE'S THEOREM & 141

Next by using Fermat’s theorem we are able to make a significant
reduction in the number of congruences that need be considered.
Whereas it was obvious from the start that the coefficients of the
congruence are limiled by the number of residue classes, it will now
appear that for a prime modulus the degree of the congrucnce can
also be limited. '

"G.13: If pis a prime, Fla) =0 mod p, may be replaced by a

congruence of degree less than p. \

Proof: By the division algorithm for polynomials we may write,
Flz) = Ale)(z® — x) + R{©) O
where the degree of R(x) is less than p. Since Fermat’s thearem G.7
shows 2? — 2 = 0 mod p for every integer &, it Tollows that
F(z) = R(z) mod p for every Integer &. Hencexthe solutions of
F(z) = 0 mod p and R(z) = 0 mod p are exactly.tbe same.

Since the leading coefficient a of R{z) mod ¥, sitisfies ¢ % 0 mod p,
we have (a,p) = 1, so by G.8 there exislsaamn ‘teger heothatah =1
mod p. Then R(z) may be replaced by bRIx) with a leading coefficient
1, and R(x) = 0 mod p and bR(z) =9 mod p have the same solu-
tions. Having agreed to make the leading coefficient 1, we cahnot
further specify ihe coefficients that may appear in R(z) and cach may
be chosen in p ways. The dégree of R(x) may vary fromltop — 1,
and, combining this fact{With the previous observation about the
coeflicients, we find thﬁt\there are a total of :

b+ gx.. +pri=pEt - D/ 1),
congruences modhp-/that need be congidered. Amy other congruence
- mod p may b&éduced to one of these.
For exs;m'pi’é, if p = 3, there are just 12 congruences that need be
considen¢d ‘corresponding to the following R(z) of degrees 1 and 2
and with leading coefficient 1:
~ st 1, x42 @ @l Pk dhn
f4ptl, 4+pit2 2+2, #+2tl 2* + 20 - 2.
Any otber congruence mod 3 is reducible to one of the forms R(z) = 0
mod 3. For example, 2z' -« + % 4+ 7 =0 mod 3, reduces by
G.13 t0 22 + 2z + 1 = 0 mod 3, and if multiplied by 2 reduces 10

2 +242=0 mod 3, corresponding to 00¢ of the “standard”
congruences mod 3 listed above.

£

20.5. Lagrange’s theorem. The anomaly that a congruence of
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degree n may have more solutions than its degree can appear only
when the modulus m is composite, for the following theorem due to
Lagrange shows that the ordinary rule of the theory of equations for
complex numbers holds for the theory of congruences when Lhe
modulus is a prime.

G.14: If p is a prime, the number of incongruent solutions of
F(z) = 0 mod p is never more than the degree of Lhe congruence.,
Proof: The proof is by induction on the degree n ol the eon-

N

gruences, oA\

(I) When r = 1, the congruences take the form ax = b miod p'with
a # 0 mod p, and by ;.8 such a congruence has just ong, soiutlon, for
we have here, since p is a prime, that (,p) = 1. o\

(LI) Suppose the theorem has been established, fo‘r flll COngriences
of degree <n + 1. Consider a congruence F(zN="0 mod p of degree
n - 1; and suppose, if such a thing be pos‘sﬂ}te that the congruence
has n + 2 incongruent solutions. Let r bdone of these solutions on
which we fix attention and let s e anpome of the other n + 1 solu-
ticns. By the division algorithm we may write

- Fla) = (& ~00() + R,

where R is an integer and Q(m) is of degree n and has julegers as
coefficients. Since by hypothesis F(r) = 0 mod p, it follows by sub-
stitution that B = 0 mod\p Also by hypothesis F(s) = 0 mod p.
Combining these obse aflons we see that (s — »)Q(s) = 0 mod p.
Since s and r are inos}gruent mod p and since p is a prime, we bave
{s —r,p) = 1, heyle€ we may invoke G.6 to assert that Qs) =0
‘mod p. (Tt is €Xattly at this point that the argument will break down
if the modulﬁs m is composite, for then it is possible to have
s—r ;éT\:mod m, (s — r)Q{s) = 0 mod m, without forcing Q{s) =
mod 72 ) \But Q(z) is of degree nand sis any oneof n + 1 mconﬂruen‘ﬂ
I‘B&ldﬂt“s for each of which we have just proved that Q{s) = 0 mod p-
¢ThiY is a contradiction of the induction hypothesis. Hence a con-
gfuence of degree n 4 1 must have at most n 4~ 1 incongruent solu-
tions mod p.

By (I), (D), and the principle of mathematical induction the proof
of G.14 is complete.

20.6. An example. To illustrate the preceding theorems G.11,
G.12, G.13, G.14, we propose to find the complete solution of
Fiz) = &' — 14z — 2 = 0 mod 1323.
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Here we have m = 1323 = 3%1%, so we begin as .11 suggests and

cousider separately
(1) F(z) = 0 mod 49; (2) F(a) = 0mod 27.

To solve (1) we begin as G.12 suggests and cousider F{z) = 0 mod
7: but to this problem we may apply the reductions suggested in
G.13, such as 27 =&, 14 =10, mod 7, to find that the congruence
reduces to z — 2 = 0 mod 7 with the unique solution X=2modT7.

Now we are ready to apply G.12 and (20.4) so we compute
M =F(2)/7 = (128 — 28 — 2)/7 = 14 and F'{z) = T2* — 4. Io-
asmuch as M = 0 mod 7 and F/(2) = 0 mod 7, there are 7 suitabls
values for ¢ solving M - tF'(X) = 0 mod 7; hence from & = XA— T,
wefind z = 2, 9, 16, 23, 30, 37, 44—the complete golution(of¥ (x) =
0 mod 49. O |

To solve (2) we begin by considering F(z) = 0 mod(3) a congruence
which reduces readily to the form 2z = 2mod 3 withh The unique solu-
tion X = 1 mod 3. D

Then M — F(1)/3 = — § = 1 mod 3 and{11) = — 7= 2mod 3,
so that (20.4) becomes 1 + 2t =0 mod.d with just one solulion,
~t=1mod 3. Hence there is just onéjéolutiorl, ¢=X43t=4d
F{z) = 0 mod 9. Ny

*

We must apply G.12 and (20.%) once more, now with X = 4. Then
M = F(1)/9 =.6326/9 = 1814 = 2 mod 3,
Fi(4) = (S 14 =1-+1=2mod3, |
s0 that (20.4) becomes, 2 -2t =0 mod 3 with just one golution
!=2 mod 3. Hdnee there is just one solution Z = X+9=4
+9(2) = 22, oK) = 0 mod 27.
To finish. 1} problem we need to apply G.11 which means we must
solve severghproblems of the form
,\'tf" £ = ¢ mod 27, « = bmod 49.
F@‘Ehié purpose we use G.8 to solve
49y, = 1 mod 27, fora = 16 mod 27;
27p, = 1 mod 49, for zz = 20 mod 49;
and then we apply G.9 to write the solaiion '
z = (19)(16)a + (27)(20)b mod 1323
of the given pair of congrucnces. '
In the present case with o = 22 an
find that » = 49 1 540 b mod 1323.

d a variety of values for b we
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As we give b, in turn, the values 2,9,16,23,30,37,44, we find
@ = 1129, 940, 751, 562, 373, 184, —3, mod 1323.
These seven solutions represent the complete solutien of
2 — lde — 2 = 0 mod 1323,

20.7. Wilson’s theorem. We arc now in a position to present

. one of the complete, but impractical, tests, mentioned in 6.2, for\

deciding whether a given integer n is a prime. .
Wilson’s theorem: A necessary and sufficient condit'@ﬁ"ﬂat
n be a prime is that (n — 1)! = — 1 mod n. A
Proof: (A} If p is a prime, then by Euler’s theorgf)(;.7 there are
p — b solutions ¢ = 1,2,.. .,p — 1 of the congruéfice
' Gy =21 —-1=10 mod\g.
On the other hand the congruence CO

Hg)=(z -1z —-2)...(z —,‘(‘Op‘\—- 1)) =0 mod p

also has p — 1 solutions: z = 1,2,.,;,,;0" — 1. Both G(z) and H(z)
are of degree p — 1 and they hayé the same leading term 7% It
follows that F(z) = G(z) — H(@) = 0 mod p is a congroence of de-
gree at most p — 2 having p.— ¥ incongruent solutions. But thisisa
contradiction of Lagrangg's theorem G.14; unless every cocfficient of
F(z} is a multiple of ({bfhat F{x) iz not of degrce =1, mod p); but,
in this latter cir(iums%ce, F{z) = 0 mod p is also satisfied by z = 0.
Hence we find _ 5\

0 5{3’(\0} =(—-1 — (= D Yp — 1! mod p.
Hpis OC@;"P."— 1is even, so (— 1)1 = + 1 mod p. If p is even,
then p &g and (— 1) = — 1= 41 mod 2. Thus for eery
primesg, we find
~O (p—T)!= — 1 modp.
N\ (B) Conversely, if n is composite, then n bas at least one divisor
d, with 1 < d < n, so that d divides (n — 1)!and (n — 1)1 = 0 mod
d. It is therefore impossible that

n—1)!'= —Imodn

for this latter congruence would imply (n — 1)1 = — 1 mod d, 2
patent contradiction.

e =
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EXERCISES

gx. %0.4. (a) By substitution from absolulely least residue systems find all
gotulions of
@+ 32+ 3lx+23=0
mod 5 and med 7.
(b) Using the results of (2) and G.11, find all golutions of the given
congruence mod 35. ¢
(¢} Discuss Lhe numbers of solutions mod 3, mod 7, and mod 35 as

ustrations of G.14. .Y
ex. 20.2. (a) solve ' O

@+ 8z2+z+ 3=0mod 5 (two sohutions). o, *

(b} Apply G.12 and solve the same congruence mod 2?(3@: gblutions),

{c) Apply G.12 agnin and solve the same congruex{qi\zﬁbd 125 (eleven
solulions). N\ 4

EX. 20.3. Solve

| O

P#+ 6ot W= moc{ﬁﬁ.

£x. 204 Solve 2° = 13 mod 490. NS

Ex. 20.5. Show thal QO
o4+ 3= (& — DRwmod 2;

Pt ot 3= @ 2Pet+4 mod 13;
and then solve 2® + 4 3 = Qmod 676.
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21.1. The exponent of a moﬁﬁfo m. The general object of
this lesson is to pursue further, the implications of Euler’s theorem,
with our results culminating,"in case the modulus is a prime, in a
remarkable analogue of the. theory of logarithms. The new theory
ties in with the precedihg chapters in that it enables us to find in a
new way the solutions\{and, first of all, to decide whether ihere are
solutions) of congshences of the type «* = b mod p, sometimes called -
“pure” congruehets.

Since E }é?zg theorem shows that a#™ = 1 mod m whenever
(a,m) =it follows that for such an ¢ and m there must exist 2
least qu'mﬂe oxponent e such that ¢* = 1 mod m. We shall describe
thigleast exponent by saying “e is the exponent of @ modulo m” of

\E{Bat “a belongs to ¢ modulo m.” It is important to note that ihe
Efinition concerns only integers a satisfying (a,m) = 1. .

For example, with ¢ = 3 and m = 13, we investigate the powers of
nand find 3 =3, 32 =9, 33 =27 = 1 mod 13, so we say that '3
belongs to 3med 13”7 Without such an investigation we might bave
applicd Euler’s theorem to assert correctly that 3 = 1 mod 13; but,

*Chapter 21 s a basic chapter, except for 21.4 which iz a supplerentary sectiol

146
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as we have just seen, it would have been wrong to conclude from this
that 12 is the least positive exponent which will scrve our purpose.

G.15: If ¢ belongs to e mod m, and if a* = 1 mod m, then e
divides k.

Proof: Since e i3 a minimal positive exponent such that a®* =1
mod m, it follows that k = e. Supposek =ge -+, with0) £ r < e
Then

a’ = (@)’ = gttt =gt =1 mod m
But this is a contradiction of the minimal property of e, unless
r=0; but if » = 0, then E=gqge ande divides k. ()

7'\

G.15.1: If a belongs to ¢ mod m, then e divides ¢(m)., 3\ by

Proof: By Euler's theorem a#™ =1 mod m, heue\e by G.15 we
find that e poust divide ¢{m).

G.13.2: If a° = a* mod m, then s = t mod,en

Proof: It is mo restriction to assum@'s’é i. Then (gm) =1
implies (a?,m} = 1, so that we may apply. whe cancellation Jaw G.6
to the given congruence o° = ¢’ modn to conclude that @*F = 1
mod m. Hence by G.15 it folloyv,s: fhat e divides s — i, but this is
equivalent to writing § = { modhe.” _

G.16: If p is a prime gngi:if d is a positive divisor of p — 1, then
2*=1mod p has d dist\ihct golutions.

Proof: Since d, .Jivides p — 1 we can write p — 1 = kd and
21— 1 = (29 2\DQ() where Q@) = R L SPE
+1 has mteg{rz}i coefficients and is of degree p — 1—d LetD
be the number of distinct solutions of 28 — 1 =0 mod p. 'BY
Buler's {heotem, since p is a prime, there aré p = 1 distinct solutions
of ?33"'(."4 1= 0 mod p. Every colution r of &# 1 — 1= 0 mod p

byl not a solution of ¢ —1=10 mod p must be a solution of
Q@ = 0 mod p, because

0= pr1—1=(%— 1)Q(r) mod p
with r¢ — 1 3% 0 mod p, implies, by virtue of G.6, that Q(7) = 0
mod p, Hence Qz) =0 mod p must have p — 1 — D solutions.
HOWt?ver, by Lagrange's theorem, G.14, we know with regard to
24 ~'1 = 0 mod p that D < d and with regard t© Q(z) = 0 mod p
that p—1— D < p — 1 — d, since the number of golutions of a
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congruence with a prime modulus is at most equal to its degree. But
the second of these inequalities is equivalent to d < D, and when
coupled with the first inequality, this shows that D = 4.

G.17: If pis a prime and if e is a positive divisor of p — 1, then
the numbor of residue classes belonging to e modulo p is given by ¢(e).

Proof: Let the divisors of p — 1 be arranged in order:
l=di<de<. ... <dp<diu< ... <dypn=p -1
where 7{(n) is the number—theorctlc functlon described in 8 1~ YThe
proof will be by “limited induction’ on &, i.e., an mductmn type of
proof limited to the integers k& for which 1 < k = r{(pe).

(I) The theorem is true for k¥ = 1, because d; = 1 (1) = 1, and
only the 1-class belongs to 1 mod p. g
 (IT) Let us assume that the theorem is r{orrect for di,ds,. . ..dy
where % is limited to the range 1 < % < +( 1), and let us consider
the next case involving dy. We sha],l %mde the argument into
several steps:

(A) By G.16 there are exactly dk“ solutlons of the congruence
z%+1 =1 mod p.

(B) Every proper divisor o ,d2 se v -slrap1’ of dryy is a divisor
of p — 1 less than d,,,, andhence is included in the list di,ds,. ...
to which the hypothesig-of induction applics, hence there are f;b(d )
residue classes belonfing to d/ mod p; since d/ is a divisor of diu
it follows that every one of the ¢(d;') residue classes belonging to
di’ mod p is a soldtion of g%+ = 1 mod p.

(C) From S{eps (A) and (B) it follows that the number of residue
classes bel lahging to dir1 mod p, not to some proper divisor of drt1y
is glvem s where

\ 8 = dpyy — {oldiy + () 4+ ... + qb(d'r(d'k-(—l)—-l)}
'*(D) From the theorem in 16.3 we know that
divi = ¢(d) + (&) + ... + ¢(deiapn—1) + ¢(decaran)
where drp,)’ = dipa.
(E) Substituting from (D) into (C) we find s = ¢{dis)-

Hence if the theorem is true for dy,ds, . . .,d; where 1 < k < 7(p — 1)»
then the theorem is true for d,,..

Then from (1), (IT}, and the principle of mathematical induction
it follows that the theorem is true for all the 7(p — 1) divisors of
P — 1, which completes the proof.

Q!
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An example illustraling the theorem is given at the close of the
next sectioil.

91.2. Primitive roots. By definition, if p is a prime and if @
belongs to p — 1 mod p, then a is called a primitive rool mod p.
The terminology results, of course, from comparing the congruence
t=1 mod p with the equation z?~!=1 over the complex
pumber system, for a root of the latter equation which is not a root
ofzt=1forl < d < p — Lhaslong been called a primitive (p — 1)
raot of unity. The object of the next corollary to G.17 is to show the),

exislence of primitive roots mod p. O
G.17.1: For every prime p lbere are $(p—1) prinﬁtij\ré"roots.

"

Proof: Since pisaprimeand p — 1is a divisor of 9 1, it follows
trom G.17 that there are ¢(p — 1) residue classes belbiging to p — 1
modulo p and, according to our definition, eac\h Of ‘these classes is a
primitive root med p. O '

The important feature of G.17.1 18 ¢bat)it guarantees for every

prime the existence of at least one prmiitive root. The unfortunate
feature of the proof is that it is an‘exi'étence proof, not a constructive
proof, and there seems to be no, really simple way of finding a primi-
tive oot for large values of p{ For small vatues of p & primitive roob
may be found by trial, and.gnce it has been found, it can be used,
together with £x. 24.1)t0 etermine Tather rapidly to what exponent
each residuc class ofp-belongs. For if @ is a primitive root mod p,
then mx. 914 shows that a* belongs to (p — D/(p = Ls).

For examples, when p = 13, we find by trial that 2 is a primitive
root, The\t{{' 18, mod. 13, is as follows:

12345 6 7 89 10 11 12
O, 5 488612119510 71

We'éan find ¢(12) = 4 values of s = 1,3,7.13 such that (5.32) = 13
hence there are ¢(12) primitive roots mod 13, namely, the corre-
sponding values of 2¢ = 2, 6, 11, 7, 1espeC jvely. By choosing s = 2,
10 80 that (5,12) = 2, we find ¢(6} = 2 classes belonging to 6 mod 13,
~namely, 2 = 4, 10, respectively. Choosing s = 3,980 that (s,12) = %,
we find ¢(4) = 2 classes belonging to 4 mod 13, namely, 2° = 8.5,
respectively. With 5 = 4,8 so that (s,12) = &, we find ¢(3) = 2
classes belonging to 3 mod 13, namely, 2° = 3,9 respectively. With
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s = 6, 30 that (5,12) = 6, we find ¢(2}) = 1 class belonging to 2 mod
13, namely, 2* = 12. With s = 12, so that (5,12) = 12, we find
¢(1) = 1 class belonging to 1 mod 13, namely, 2° =

2L.3. The theory of indices. If p is a prime and if @ is a primi-
tive root mod p, then the powers

a, a4, @, ..., a7 e = 1 mod P A~
are p — 1 in number and are incongruent in pairs, for otherwist\d
contradiction of G.15.2 and the fact that a is a prlmltwe TCof Wmﬂd
appear. Hence it follows that these powers represent, in som% order,
the non-zero residue classes mod p. In other words, if §§ ¥ mod p,
there exists an integer 2 such that ¢® == b mod p. . We now agree,
for convenience of reference, to give this 2 a new nafn} we shall wrile
% = ind4 b, to be read “z is the index of b to the Hase a mod p”

In the very definition of the index the reader’ will no doubt recognize
the close analogy with the usual definition m\analy sig of the logarithm
of b to the base ¢; and in studying the, followmg rules of indices,
the reader can easily antlclpate the results by thinking of the usual
rules of logarithms. Just as in th& study of logarithms where the
base a is usually kept constant, m.a given discussion, so that the a i
not written in the logarithmgyse here, too, we will agrec to dispense
with the suhscnpt @ on each\ndex, simply adopting the understanding
that in a given problem, 6rin a given sct of rules it is a fixed primitive
root ¢ which is beingused as the base of the syslem of indices; but
there is a further - dgrcement here, not of concern in logarithms, that
the modulus p, 1\ 8 3lso being held constant.

.18; Q“Tes of indices with the base @ modulo p:

Gl&l Il b=.¢# 0 mod p, then ind & = ind ¢ mod p —
and QOnvcrsely
G 2: Ifd=be0mod p, then
ind d = ind b + ind ¢ mod p — 1;
and conversely.

G.18.3: If d = b* £ 0 mod p, then ind d = % ind b mod p — 13
and conversely.

Proof:  Every one of these rules is a direct consequence of the
usual rules of expouents and of G.15.2 with ¢ — p—1, and Wlth
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s=indb,t = ind e, u = ind d. For cxample, in G.18.1 by hypothe-
sis and definition we have
gind ? = b = ¢ = a'*? * mod p;
then since @ belongs to p — 1 we apply G.15.2 to conclude that
ind b =ind cmod p — L '

Conversely, from ind b = ind ¢ mod p — 1 we may write ind b =
ind ¢ -+ K(p — 1) where X is an integer. Then
) h= qind ? = aind e (P-1) = gind a(ap—l)K = gind ¢ =¢ mod. o
The details in proving G.18.2 and (.18.3 will be left as exercise,
for the reader. ) \ \.
In the following example with p=29 we use the primitive roof &= 2
and construct a complete table of indices, comparable to j}h‘é’usual
table of logarithms. However, with logarithms it is @0t thought
necessary usually lo give a companion table of afitislogarithms,

because if the numbers for which logarithms are %Qren are arranged
1

in increasing order, then the logarithms themsel es automatically
appear in increasing order. But when the Yion-zero residue classes
mod p for which indices are given arc arrangéd in the natural order,
then the indices do not appear, in geﬁéral, in the natural order;
hence a separate table of apti-indjces Js a very great convenience.
In fact in constructing such tabléspt is the latler table which it 15

most nalural to form at the Q!L‘Eset, s0 we give it first in the following
example: ¢ \J

&

T T 2 3 A6 7 8 0101112 13 1| ANRIRERS

b | 9 % 8N63 6122419 918 71428 Given jud b,
- <\ mod 28;
ind 5 | 15 167718 19 20 21 22 23 24 25 26 27 28 |  tofmd b,
b | 27 25.21 13 96 23 17 5 1020112215 11 mod 29.
b Iz 3 45 6 7 8 9101112131 INDICES
indbof28 1 5 222 612 3702325 7 13 13| Given d,
m\ 4 ]TlOd 29'.

P l1s16171819 2021 2223 2425 2 27 28 | 10 fiod ind b,
indb |27 421 11 024172620 81619 15 14 mod 28.

_ As an oxample of the use of ihe tables of indices and the rales of
indices, lot us solve 21z = 36 mod 29.

First we note that 36 = 7 mod 29 and then using G.18.1 and
G.18.9, we have ind 21 -+ ind # = ind 7 mod 28 From the table
of indicos we have 17 + ind ¢ = 12 mod 28, wheneeindz = —5 = 23

Q
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mod 28. Finally, by the table of anti-indices and by an application
of the converse part of G.18.1, we find the unique solution ¢ = 10
mod 29.

As another example, let us solve #* = 36 mod 29.

By Euler’s theorem 2 = 1 mod 29, and 36 = 7 mod 29, so Lhe
problem reduces to the simpler form 2* = 7 mod 29. DBy G.18.1 and
G.18.3 we find that an equivalent problem is 8 ind o = ind 7 mod 28;
from the tables this last congruence may be written § ind g 212
mod 28. Since (8,28) = 4 is a divisor of 12, this congruence,may be
golved asin G.8,1. First we consider 2ind x = 3 mod 7 and maltiply-
ing by 4, we discover the solution ind x = 12 = 5 mod, T\ JTherefore
ind 2 = 3, 12, 19, 26 mod 28 are the only possibilities.“\By the table
of anti-indices and G.18.1 it folfows that z = 3, 7;'26, 22 mod 29 are
the respective solutions of the given problem and form the complele
set of solutions.

Using the same attack, we find the congr‘uencp * = § mod 29 has
no solulion; for the equivalent linear ccmg\'uence $indr=ind8 =3
mod 28 has no solution by G.8.1 masrnugh as (8,28) = 4 does not
divide 3. ™

For extensive problem- solvuig of this type it may be useful to
know that tables of indices.dhd anti-indices for all primes <100 are
given in the Uspensky anthHeaslet text, listed in 1.3.

~&

214, A slide rulé\ for problems mod 29. Since the theory
behind the ordinary slide rule is the theory of logarithms, it is reason-
ably clear that &ith the aid of the theory of indices we may construct
a slide rulefbr’the solution of all problems of the type suggested by
G.18. Asn cxample we shall show here how to construct a circular
slide 1o be used in solving probl( ms mod 29.

]}y.way of preliminary discussion we need to digress for a moment

.ﬁha explain the possibility of defining, for real numbers, congruence

shodulo m where m is a fixed real number. For real numbers a and b,
we shall define @ = b mod m if and only if @ — b = Km where K 18
an infeger. This notion is an equivalence relation dividing all the
real numbers into mutually exclusive classes of congruent numbers.

For example, a very useful device in some problems is the notion
of congruence mod 1; of course, in striet number theory this concept
may not be of much use, because all the integers fall into one class,
say the O-class, mod 1; but for all fractions, say, or for aJl real numm-
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bers, the concept is useful, every real number a being congruerit mod 1
to one and only one real number b in the interval 0 = b < 1.

In particular, here we want to use the notation 8 = 6 mod 27 as
a convenient way of saying f = 0 4 2xK where K is an integer.
For it 6; and 6 are central angles measured in radians with the same
initial sides, then their terminal sides will be coincident, inasmuch as
9, radians is one revolution.  In other words, to write &, = & mod 2w
is equivalent to the usual “equals relation” for angles.

fp making a circular slide rule mod 29 we shall use five concentric
circular scales, each of which we ghall describe in terms of ,pqlar'
coordinates, the radius veetor of each scale being constapt\while
the polar angle is in each case a funclion of an iutegraol‘pai‘mneter,
with all five functions involving the same constant k =2r/28. The
exact deseription of the scales 1s a8 follows: S

Ascale: r=r, 8=FkA;

/

c-scale: r=re, 0=~Fkinde; N
dscale: r =ry, 0= Fkindd; S
R-scale: r=rn — —kind RNV

Q=scale: r=r; 6=F({nd Q)2 if ind Q is even.

We shall make a rule* in thc:'h poL Ty << TS and in
which the A- and c-scales aresgonstructed upon dne circular disk,
while the other scales are genstructed upon another sheet, the disk
being pinned to the sheptyand free to rotate, at the cOnmon center
of the scales. The ﬁ{éﬁ'fbur acales have the parameters A, ¢, d R
rimning from 1 to 28; and as usual in constructing a slide ule, we use
the formula toslécate the correct g-position corresponding to a given
value of the parameter, but we label that position not with the value
of 8, but witl the value of the parameter.

We ktﬁ}; from G.18.1 that if C = ¢ mod 29 then ind G = ind¢
mod 28, or ind = ind ¢ + 28K where K is an integer. Hence we .°
discover the relation

4 kindC=kindc+k2-8K=kindc+2er

_s0 that with reference to the ¢-scale we have

8(C) = 9(c) mod 2. _
But this is exactly the type of relation discussed earlier and shows

that 9(C) and ¢(c) are “equal”’ angles. Hence this type of slide rule

*See the tailpiece to Chapter 21 and construct a working model fram the sheet

facing page 154.
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automatically takes care of our need of staying within the same
residue classes, mod 29 (or mod 28 in case of the A-scale), for the
same position on our circular scales. It will be unnecessary, therefore,
to add any labels, different from those of the non-zero residue
classes mod 29 alrcady marked.

If the disk carrying the A- and c-scales is rotaled so that e-ray
marked 1 falls upon the d-ray marked z, then if the d-ray marked z
falls upon the e-ray marked v, it will follow that xy = 2 mod/29,
Henee if any two of the three quantities z,y,z are given, the third

can be found. <\)
The proof resides in the fact that in the rotated position of the
central disk we have in terms of angles: N

6(z) = #{z} + 6y} mod 2, &0

but in terms of the ¢- and d-scales this congrusdoe implies
kBindz=*%indz + kindy +~2rK
where K is an integer. Multiplying by 1/‘,&\: 28/2%, we arrive at
the relation o\
ind z = ind 2 + ind\y"+ 28K:

thus ind z = ind z 4 ind ¥ mod 28 aud by G.18.2 we know that this
implies 2y = z mod 29. N

A ray extending from the dsscale to the c-scale obviously solves
A = ind ¢, s0 here in graphic form is a table of anti-indices, and with
Just a bit of looking (bgeause of the ¢’s not appearing in the natural
order) it may also be . donsidered a table of indices.

In the d- and Bsscales is provided a direct solution of the con-
gruence R = 1¢mod 29, obtained by merely extending the ray from
d on the d-scaleXto R on the R-scale.

The preof’is simple since the proposed construction gives
5{d) =, Y mod 2x, or £ ind d = —% ind B mod 2, whence

o\ indd+ind R=0=28 = ind 1 mod 28;
but{his last congruence by G.18.2 implies dR = 1 mod 29.

Bimilarly, the d- and Q-scales provide a direct solution of the
vroblem & = Q mod 29 in the fourfeen cases where there are solutions.
For from G.18.3 we know that the given congruence is cquivalent to

2 ind d = ind ¢ mod 28;
but by G.8.1 we know that there are solutions, in fact just &wo golu-
tions, of this latter congruence if and only if ind Q is even. Since
this last restriclion is exactly that placed on the function defining
the Q-scale, the connection is fairly obvious. However, it is to be

£
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noted that Q@ = ¢ mod 29 implies ind @ =ind ¢ mod 28 and
o) = 8lq) mod =, not 2r. Hence for a given value of @ there are -
found two entries on the Q-scale differing by - If then a ray is
drawn from either position of @ on the Q-scale to dy and ds, TESpec-
tively, on the d-scale there will be found the two solutions of & = 0
mod 29. For the construction gives 6(d) = 8(Q) mod
% ind d = & (indQ)/2 mod =, oT ok ind d = kind ) mod 2w,
2ind d = ind Q mod 28, or &2 =Q mod 29. ~

The fact that d? = Q@ mod 29 has sohutions for fourteen valugs of
( of even index and fails to have a solution for fourteen valués-ef Q
of odd index, will provide us with a good introduction to the next
chapter. N
RY
EXERCISES \%

AY;

x 214, If(fem) =1 and a belongs to e mq@'\rxr:,.\prove that o belongs to
E where d = (e,s) and e = Ed- N\

Ex. 21.2. Prove that 1,5,7,11 all belong, fot or 2 mod 12 and that there
are no residue classes belonging to:P(12) mod 12.

EX. 91.3. If there is one class @ he}ds_j;ging to ¢(m) mod m, prove that ihere
are ¢(p(m)) classes belonging.to $(m) mod m. '

Ex. 91.4. TFind 8 residue clasies belonging to 20 mod 25.

mx. 915, Prove that 2 ixneba primitive oot mod 17.

Ex. 21.6. Prove that 8%s"a primitive root mod 17 and then use Ex. 21.1
to find all the primitive roots mod 17.

Ex. 24.7. Findsa(primitive root mod 19 and then use EX. 94.4 to classify
all the resique classes mod 19 according 10 the exponents to which they
belong~& )

EX, 21 %,Nf « belongs to e mod m, prove that e divides A{m) as defined in
B, 1.7,

”{‘XQ“? If p js an odd prime and @ s a primitive root mod p, prove that

\E‘: “p — a ig a primitive root if and only if p = 1 mod 4.

x. 21.10. Complete the proof of G.18.2.

Ex. 21.44. Complete the proof of G.18.3. .

EX. 2.2, Use the tables given in 21.3 to solve the following congruences
mad 29:

x = (12)(18), == (1(25), 3p=7, 1z=23, Bz= 1,
r = (1510, = (33F= 4, =16, 22=18
ST, g=1s p=22, PEH O=6

EX. 9143, Selve the above congruences mod 20 by the use

rule mad 29, .

of the shde
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EX.
EX.

EX.

EX.
EX.

EX.

21.44.  Construct a 1able of indices mod 29 using the primitive root; 3.
21.15. If p is a prime, let N(%,p,y) be the number of solutions z of the
congruence x* = y mod p. If k is fixed, show Lhat V has one of two
values for various values of y = 0 mod p and find the number Q of y's
leading to each of these values of V.
Ny = (kip — 1), Ny = 0; Ql = (p— 1)/Ny, Q2 = p—1—-4G.

21.16. Why do the diamelrically opposite enlries on the c-scale of the
circular slide rule mod 29 add 1o 299 ~
2{.27.  Construct a circular slide rule mod 31,
21.18. Establish the following theorems: O\
(a} if (a,m) = 1 and ¢™ 1% 1 mod m, then m is compositer
(b} if @ belongs to m — 1 mod m, then m is prime; A by
(c) if m — 1 has just & distinct prime factors and a™~15 Timod m, then

k tests will suffice to decide whether belongs & it — I mod m.
21.19. With a = 2 use the ideas of Ex. 2/ A8t fest the primality of
(a) 600,001; (b) 706,001.

An example of the use of the slide rule mod 29. Turned to this position, the rule
solves D = 16C mod 29 with D and € on the same ray,



W Whai Gauss put into print is as true and
important foday as when first published; his
publications are staluies, superior o other
stalutes in this, that nowhere and never has a
single error been delecled in them.

© —M, CANTOR

cHAPTER 22"

QUADRATIC RESIDUES A

7

AND LEGENDRE'S SYMBOL

.\\,‘

22,). Quadratic COTLZTUENCES: ji‘The purpose of this and the
following chapter is o providela complete test for the existence of
solutions of the general quaeiratio cONgruence

art +bx HE=0modm, ¢ # 0 mod m.

In a scnse the distussion of Chapter 20 completely solves this
problem; however, {he reader will recall that by the method of ttEaL
chapter a givengongruence probtem mod m was reduced to a series
of problemns od p, a prime, and that the solutions mod p were to be
found, présusably, by trial of all the residue classes. This is feasible
for smallprimes p, but impractical for large primes. I_t. is that defect
-Whidi";‘;e propose to remedy in the case of quadratic COngruences,

g the sense of providing another Way of deciding whether sofutions

18,

If in the general congruence displayed above we b
then the congruence is called a pure quadratic congra
pose of the next theorem i to show that for a prime medulus the
genoral quadratic congruence 8 equivalent to & chain of two eongru-

. ences: the first of which is a pure quadratic congruence, which may

ave b = 0 mod m,
ence. Lhe pur-

*Chapter 22 ix a basic chapter.
157
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or may not have a solution, and the second of which is a linear con-
gruence, which iz always solvable provided that the first congruence
of the chain has a solution. The formulas arc remarkably like
those of the quadratic formula, so familiar in the theory of equations
. for complex numbers.
~ Since the case p = 2 is trivially solved by trial, we shall limit our-
" selves in thig and the next lesson to having p represent an odd prime.
G.19: If pis an odd prime and if @ 5 0 mod p, then \
ar* &bz +e¢=0mod p O\
is equivalent to the chain of congruences which follows: (%
W= —4dee, 2az=u—bmodp. ~\°

N
3

Proof: By the hypothesis that p is an odd prime and that a # ¢
mod p, it follows that (4e,p) = 1; hence G.6 miy be employed to
show that the given congruence is equwalcnt\tm the following con-
gruence:

4o + dabze 4+ dac =g }md p.
By subtracting 4ac and adding 5 to each side of the latter congruence
we succced in completing the squape and arriving at the cquivalent
congruence which follows:

(2az + by = bg — 4ac mod p.

By setting 2 = 2ax + b mod'p, we complete the proof; for if there is
no u satisfying u? = §? —@c mod p, then there is no x satisfying the _
given congruence; and\if\ﬂlere is a u satisfying u? = b — 4ac mod p.
then because (2,p)(% 1 there is an x satisfying 2ax = u — bmod p
and satisfying th& given con gruence.

22,2, Qx\dratlc residues. As shown in the preceding scction.
the solution'of the general quadratic congruence mod m reduces finally
to the solution of pure quadratic congruences modulo primes. With
due Jotice, we now change notation and consider as our typical
problem the following pure quadratic congruence:
2! = a mod P, {a,p) =1, p an odd prime. _

The case a = 0 mod p is trivial, having the unique solution =0
mod p, and is not included in the discussion.

We begin with the following useful definitions.

If the congruence 2% = g mod m has a solution, then « is called a
quadralic residue mod m; if there is no solution, then a is called 2
gnadratic non-residue mod m,
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Tor example, 1,4,9,3,12,10 are quadratic residues mod 13, for they
are the remainders mod 13 of the squares of +1,+2,43,44,+5,£6, re-
gpectively. Since this exhausts the list of possible solutions (except
for the case ¢ = 0 leading to a = 0 which we have agreed to exclude
from the discussion, although by definition 0 is certainly a quadratic
residue), it follows that the other non-zero residue classes, 2, 5, 6,7, 8,
11 are quadratic non-residues mod 13. :

G.20: Fxactly half the non-zero residues mod p are quadratié’\
residues mod p. \

Proof: By G.18, z* = a mod p implies 2 ind » = ind e modp"— 1.
Since (2,p — 1) = 2, it follows from G.8 that there is a golution for
iud x, and hence for #, if and only if ind a is even. Sirpe the indices
mod p Tun 1,2,...,p — 1, exactly hall the indicegare even, which
completes the proof.

G.21: The integer a % 0 mod p is q@u\adratic residue, or &
quadratic non-residue mod p, according’as,’ :

s=1modp, or @\=—-lmodp,
where s = (p — 1)/2. N

Proof: By Euler’s theorem;’:}:;"l —1=0modphasp— 1 solu-
tions made up of the non-zéxo residue classes mod-p. In factored form
2 =1 = (o =1 -I\1) By G.16, the congruence gt —1=0 mod
p has exactly s solubions. But it is easy to see that every quadratic
residue mod p ig :(s&ution of #° — 1 = 0 mod p; for if there exists an
nteger x so 'th@ % = ¢ mod p, then @* = #* = z7~1 = 1 mod p, the
last congruenée being justified by Euler's theorem. However, by
G.20 ﬂ‘?%ﬁadratic residues are s in number, 50 ail the solutioPs of
¥ — h="0 mod p are quadratic residues. Hence the remaining §
sabfions of z»~1 — 1 = 0 mod p must be quadratic non-Tesidues all of

“which solve #° + 1 = 0 mod p, because by G.16 and G.6 the factor
# — 1 = 0 mod p may be cancelled, when  is a non-residue.

G.21.1: 'The product abis a quadratic non-residue mod p if and
only if exactly one of ¢ ox bis a quadratic non-residue mod p.

Proof:  Since (ab)® = ab* mod p, it follows from G.21 that Cf*‘ and
b are either congruent to |1 or —1 mod p SO that (ab)* = — 1ifand
only if just one of a* or b is congruent to —1 mod p. By G.21this
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result may be rephrased in ferms of residucs and non-residues as
gtated in G.21.1.

22.3. Legendre’s symbol. In explaining and carrying out fests
to decide whether a given integer @ is a guadratic residue or non-
residue mod p, we shall find it extremely convenient to use a special
number-theoretic function known as Legendre’s symbol, written

(a/p), with its values defined as follows: \
(a/p) = +1ifa #£ 0mod p and if @ is a quadratic rcsidug lI\lOd}O;
(a/p) = —lilaisa quadratic non-residuemod p. ™

Of course, it is essential that the user of this Legendr;eﬁgfmbol bea
bit cautious, and not interpret the symbol as a meré Traction in pa-
rentheses, for as we know already from the defi ition and sec again
in the next theorems, the properties of the syhbol are quite differ-
ent from those of fractions. O

.’\ v

G.22.1: I a =bmod p, then (a/’g{).\%"'(b/p).
G.22.2;: (a/p) = a* mod p. \ QY
G.22.3: (ab/p) = (a/p)(l%{g)il’:“

G.22.4: (@b/p) = (B/pN

Proofs: If @ = b mod'p then 2° = ¢ mod p has exactly the same
solutions, if any, a @cs’w? = b mod p, which establishes G.22.1.

The result in G,22.2 is a direct consequence of the definition of the
Legendre symboland of G.21.

The resul 'Jﬁ (.22.3 is a mere restatement of G.21.1 in lerms of
the Legenda:} symbol.

G.Z%;ﬁlr is a special case of G.22.3 making use of the fact that
¢ = 03 is obviously a quadratic residue so that {¢?/p) = L.

~d For the present in evaluating Legendre's symbol, we may be con-
tent with the above theorems, but in the next chapler a much more
elegant method of evaluation, avoiding computations of ¢* mod p, will
be explained. .
For example, the question “Ts 113 a quadratic residue mod 1012
should first be mentally compared with the equivalent guestion
“Does #* = 113 mod 101 have a solation?” and then rephrased “Find
the value of (113/101).”
According to G.22.1 and G.22.4, since 113 = 12 = 2?3 mod 10I-



Seetion 3 LEGENDRE'S SYMBOL * 161

the problem reduces to finding (3/101). Then, at this stage of our
work, we must have recourse to finding the value of 3% mod 101, as
in G.22.2, Since 3% = 243 = 41 mod 101, we find in tum that
300 = (41) = 1681 = 65, 30 = (65)% = 4225 = B4, 3% = (84)(41) =
a444 = 10, 3% = (10)? = 100 = —1, mod 101, Therefore (3/101) =
~1;and 3 and 12 and 113 are not quadratic residues med 101

EXERCISES

ex. 924. As in G.19, find the chain of congruences equivalent \10
94t + 8z — k= 0 mod 5 and determine for what values of & thérs will
be solutions. ¢ ‘

e 929, If 22 = g mod p has a solution 21, show that za =P~ %1 1s also
o solution. If a 5% 0 and if p is odd show that 2 Z

£x. 92.2. If p is an odd prime and i (a/p) = 1, proveshat @ is a quadraiic
residue mod p* and * = ¢ mod p* has exacily qu\sDiutionS. Use G.12
and induction. RS

Ex. 994, I ais odd and m = 3, then 2 =8 ‘m?fl 97 is impossible unless
a= 1 mod 8. _

% 925 Il me 1 mod & and if m = $\then ¢* = @ mod 9™ has exactly
four solutions. Use G.12 and indugtion, poting that the four solutions
are related: 21, 22 = — &L 3 =t 27 = —E + 27t

Bx. 926. Prove that (—1/m&>+l1 # and only if p has the form
p=4K+ L O

EX. 227. Asin G.22, find the value of (791/101).

- EX 92.8. Solve 2 = 140 mod 22L

EX. 22.9. Solve 23565 mod 280. -

EX. 92.40. Solve x= 11 mod 101 (no solutions).

Ex. 22.41. Selye/e? = 33 mod 101. _ .

EX. 22.12. "thw (hat for every prime p > 3 the sum of the quadratic
1'e.~j.i’dligs mad p is divisible by p- Hind: Use X. 3.3.

4 .\' 3

N
\¥
\:



» The beautiful has its ploce in mathemalics
Jor here are triumphs of the crealive imaging-
Lion, beauliful theorems, proafs and processes
whose perfeclion of form has made them
classic. He must be a “practical” man who
can see no poelry in mathemalics.

—W, F. WHITE

CHAPTER 23" ~

N
7 AN
NS ¢

N\

THE QUADRATIC Recwkocnx{t‘Aw
S\

23.1. Results leading to the gquddratic reciprocity law. We
now begin a chain of theorems and corollaries which culminate in the
justly revered quadratic recigtecity law with whose aid the Legendre
symbol can always be evaluated, and hence the solvability of every
pure quadratic congrgehce and, indeed, of every quadratic con-
gruence decided. N\

It is this reciprogity law which the master, Gauss, declared to be
“ihe jewel of afithmetic.” .

It will gyeatly simplify the statement of all the theorems if 1t 18
always uvdgrstoad, as in the previous lesson, that p is an odd prime
that (¢p) = 1, and that g is an odd prime distinet from p; further-
mqsp?f;that s=(p—1)/2and thatt = (g — 1)/2.

\2‘: G.23: If K is the number of least positive residues of the set &
a, 3a,.. .., sa which exceed p/2, then {(a/p) = (—1)¥. :
For exampile, to evaluate (3/101) we may note that 3, 2-3... 163
=48 are <101/2; then 17-3,...,33-3 = 99 are >101/2; next
4-3=102=1<«101/2, 35-3=1+3,..., 503=1+ 16-3 <
101/2;hence K = 33 — 16 = 17; therefore (3/101) = (—1V = ~1.

“Chapter 23 is a basic lesson. Some knowledge of the bracket function defined
in 9.1 is a prerequisite,

162
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Proof: Suppose R =15, S;u=s;mod p, ¢ <1 < p/2, p/2 <
g < p, With j = 1,2,...  K;i=12,.. ., H = s — K. Then we claim
that 75,72, - - T &P — S, P — 820 P~ 51 represent 1,2,3,. . .. Ingome
order. Certainly the numbers of this list are all posilive, all less than

p/2, and are s in number; that the numbers are distinct, which will. -

complete the claim, may be seen as follows:

(1) ¥ r; = rq, then Rie = R,.a mod p;since (¢,p) = 1, it follows
that B; = R. mod p; hence R; = R,for0 < RyBn =5 <P

(9) Similarly, p —§; =D — Sm implies S; = Sa A

(3) Ur;=p — s; thenr; + 85 = 0 mod p so that (B + SHa=N
mod p; since {a,p) = 1, it follows that R; + S; = 0 mod p; b}lt:ﬂ]is'is
impossible since 0 < R.,S; < 880 that 0 < B: +5; < 2s =p'1 <.

Hence if we multiply together the numbers of thef\set. a.2a,3a,
...,8¢ We ay write "‘\

sla* = (R)...(Rga)(Swa). . (Sga) = riaNFES. - 8K
= (—1)%r...ralp — sy (p—8R= (=1)¥s!mod p

Since p is a prime, it follows that (sL.p) =1, 50 that we may apply
G.6 and arrive at @’ = (—1)F mod p. O '

Finally, because of G.22.2 it follows that (a/p) = (—D, the con-
gruence replaced by equality becaige of the limited range of values
of the two symbols appearing adbecause p > 2. _

Before continuing with"thé mext theorert let us make use of the
noiiong introduced in 'thcs'fjr}ccding proof to define

T A=t Frm, B=satat .. him
M = [a/p) &N 2a/p] + .- T [se/pl-
where the brackessandicate the bracket function of Chapter 9.

G.24: (@)~ /8 =M — Kp + 2B.

Progf -'9%{! the division algorithm we find -
R = p[R‘-a/p] +rs _Saﬂ = P[Ss'afpj + 85

By @k 3.4 we kow that 1-+2+3+ .. Fs=sEF 1)/2 =

(2~ 1)/8. Hence we may write
(24.1) a(p*—l)/8=a+2a+...+sa=Mp+A+B. ‘
Then using the preliminary claim in the proof of G.23, we may wrte
(2.2 (P-1)/8=1+2+... pgmrib. . P @)
G (p—s0)=A+Kp—B _
}é}’ subiracting (24.2) from (34.1) we oliminate A and arrive at
24,

G.24.1: (2/p) = (—1)F-LA
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Progf: When we take a = 2 in G.24, we must take M =),
because M = [2/p] + [4/p]1 + ... + [(p — 1)/p] contains only
gummands for which the bracket function is zcro. Hence G.24
shows that (p> — 1)/8=2B— Kp= —Kp=—K=+K mod 2
Then from G.23, we obtain G.24.1.

( G.24.2: If M = [g/p] + [2¢/p] + ... -+ [sa/p], then {g/p) =
—1)x, : |

Proof: Since g is odd, (g — 1) is even and il we take d =7 in
G.24 we find since p also is odd that M = K mod 2. By*G.23 it
Tollows that (g/p) = (—1)*. :

(G2ba 1N = [o/a) + o/l £ ..+ [tp/4l) then (p/g) =
—1)¥, L

Proof: For this corollary we need but change Lhe rales of p and ¢
in the preceding G.24.,2. L

X 3

G.25: In the notation of G.24,2%hd G.24.3, M + N = sl

Proof: The proofl is a geomeﬁfjc one, originated by Tiscnstein, a
pupil of Gauss. Consider a €artesian coordinate system and (as in
11.3) define a lattice poininto be a point (x,y) both of whose coordi-
nates are integers. &

On the one hand \’sjnée p and ¢ are odd, the number of lattice
points inside the rgm\angle whose vertices are 0:(0,0), A: (p/2.0);
B: (p/2,4/2), CvADyg/2) is given by si. _

On the othér hand, there are no lattice points within the rectangle
on the diggonal OB; and the numbers of Jattice points inside triangles
0AB ap&xﬁBC are given by M and N, respectively. )

Thé first of these assertions follows from the fact that the equation

OfOB is py = gz; then inasmuch as (p,g) = 1, it follows that a

dttice point (x,y) satisfying this equation would have to have £ 2
multiple of p(and y a multiple of ¢), but the z’s under consideration
range only from 1 to s,

The second assertion follows from the fact that [kg/p] is the
number of lattice points on the vertical line z = k hetween OA Ef“d
OB, because these lattice points must have y-coordinates gatisf ylng
0 <y = [kg/p]. Summing from k = 1 to k = s, we find M lattice
points inside triangle AB. In a similar manner [up/q} is the number
of lattice points on the horizontal line y = u between OC and OB
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gumming from u =1 to u =14 We find N lattice points inside
triangle OBC. '

Equating the results of the two ways of counting the number of
laitice points inside the rectangle, we have the desized relation
MAN=st

G.26: The quadratic reciprocity law: (g/p) = (p/O (-1}
Proof: From G.24.2, G.24.3, and G.23, we find
(0/D(g/p) = (—DH(=DF = (=1 = (=B .

Finally, whether (p/g) is +1 or —1, we have (p/g)* = +13 h(;ﬁléé}f
we multiply the last displayed eqruation by (p/g) we arrive at the law
" stated in G.26. SO
This law receives its name for obvious reasons. Q4. fhe one hand
it deals with symbols which concern “quadratiol\pesidues or non-
residues. On {he other hand, the symbols q@)‘ and (p/q} which
appear in the law are in a sense “reciprocak, ™ The implications of
this last statement are well used in the rtext.’ section.

23.2. The evaluation of Legend;fjé’é symbol, Given any A not
a multiple of p, we may decide wigther the congruenco a2 = Amodp
has a solution, or nof, by finding whether (A/p) is +1, or -1,
Tespeclively. “\

To evaluate (4/p) B\may proceed as follows:

(1) If a is the abselutely least residue of A mod p, we may write
(4/p) = (a/p) hyXr-22.1. .
« @ e co%’ains any perfect squares, say a = m2b, where b is

squarefrog e may write (a/p) = (b/p) by G.22:4

(3) Thevmost complicated form which b can have is b=
(_1),2(}'}%12- . .qx where the ¢'s are distinct odd primes; by G.22.3 we
mag rite (b/p) = (—1/p)@/P)@/P) - -(0W/P)-

\) To evaluate (—1/p) we use (—1)° as in G-21.

(.5) To evaluate (2/p) we use —1 with the exponent (p* — 1)/8
a3 in 5,24.1,

(6) To evaluate each (g/p) we use the quadratic recipmtfity 13\15:
9-26 for this leads us to a new problem witha smaller “denominator,
since in {p/q) we have ¢ g{b[g1a| < s < p; we may begin the
above routine again for (p/@) and eventually arrive at Legendre
symbols that, can be evaluated dircetly.
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(7) Collecting the results in (4), (5), and (6) and substituting
carefully in (3) we find the value of (A/p).

As an example we consider the evaluation of (231/997). Here the
prime 997 is so large that a direct consideration of the congruence
z? = 231 mod 997 is not practical. After facloring 231 = 3.7-11,
we write {231/997) = (3/997)(7/997){11/997).

To find (3/997) we use .26 to write

(3/997) = (997/3)(— 1y = (1/3) = +L.

Here we have used ¢ = (997 — 1)/2, t = (3 — 1)/2, ar(d'\gb’f =1
mod 3. O\

W
.

To find (7/997) we use G.26 twice to write e\
(1/997) = 997/1)(— 1) = (3/7) = (1/3) (=F* = ~(1/3) = = L.

To find (11/997) we use G.20 twice to write

(N
(11/997) = (897/11)(~1)5 = (TAW =
QB D) = —(4/T) = —L
Combining these results we cggéluﬂe that
(231/997) = (F1)(=1)(-1) = +1.
-Hence 231 is a quadratig residuc of 997.

As a further exampledst us consider the problem of finding all odd
primes p for WhicK’IL’is a quadratic residue. lLividently we must
determice p so that'(11/p) = +1 and by G.26 and G.22.1 we may
suppose p = p\‘ mod 11 and write

AYpY'= +1 = @/I(=1pens 0 <p < 1L

Whens({')—f}ﬂ) = +1,i.e., when p’ = p; is a quadratic residue mod 11,
we‘m{ﬁt have (p — 1)/2 eren, or p = 1 mod 4. When (p'/11) = -1
ieWhen p’ = ps is a quadratic non-residue mod 11, we must have
\{p' — 1)/2 0dd, or p = 3 mod 4. By the Chinese remainder theoren,
we must have in the first. case p = p; mod 11, p =1 mod 4, o
p = 33 + 12p; mod 44; and in the second case, with p = ps mod 11,
p = 3 mod 4, we must have p = 11 4 12p; mod 44. Since =3
mod 4, it follows from G.21 that (—1/11) = —1, hence we MY
pair ofi the numbers p. and p; by the relation p: = J1 — pu. But
also 11 = —33 mod 44, so the two cases in the above argument maY
be combined into one formula: p= 1 (33-+12p,) mod 44. Spec-]_ﬁca.][ys
since 1,4,9,5,3 are the quadratic residues mod 11, we find that 11152

Q!
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- guadratic residue of an odd prime p if and only if p has the form
p=MT+au
where ¥ = 1,5,7,9,19, and where T is an arbitrary integer such that
pis prime and p > 0.
Some examples are as follows:
p=5,1,19,37,43,53,79, 8, 89, 97, 107, 113, 127, 131

93,3, Concluding remarks. Legendre’s symbol and the quad-,
ratic reciprocity law afford an elegant solution of the problem “af
determining the exisfence of solutions of 22 = ¢ mod p; but in those
cases where solutions exist, and it is required that they be fourid,
thore remains considerable labor, especially in case of a large prime.
Some labor-saving suggestions are given in the Uspenskpand Heaslet
text cited in 1.3. AN

 we consider 2 = @ mod m, where the modulds is composite, We
" may use the methods of Chapter 22 to sohie:tlté problen. . In par-
ticular, by virtue of Ex. 22.3, EX. 93.4, Eg{k??.ﬁ, and the resulls of
this lesson, we can decide whether the' gongruence has a golution
without actually solving it. Some seduction in this last problem
can he effecled by the use of the Wacobi symbol, which 1s an inter-
esting generalization of the Legpi}}]'re symbol. The properties of the
Jacohi symbol are discussedif Uspensky and Heaslet, and some of the
properties are discussed inythe following exercises,

\" .

A\ X
Ex. 224  Evaluate (783/997) and (127/997). _
Ex. 92.9, Evalvate (2/p) for p= 8K +1, 8K+ 3, 8K +5 8K+ 7.
EX. 2.3, \Delermine whether 2* = 239 mod 2431 has solutions. Note that
2431\= 11-13-17.
EX.(234. Tind all primes p for which 7 is a quadratic residue.
3225, Find all primes p for which 13 is 2 quadratic residue.
EX. 2.6, If p and q are distinct odd primes withp=1 mod 4, show that
(p/q) = +1, if and oply if ¢ has the form
g= p+ a{p+ 1) med 2p
where (a/p) = +1. .
EX. 23.7. 1f p and ¢ arc distinct odd primes withp=3 mod 4,
(p/q) = 1, if and only if ¢ has the form
¢= + {3p+ alp+ D} mod 42
- where (¢/p) = +1.

ghow that
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Ex. 23.8. If P= pips...px where the p's are odd primes, use induction to
prove that
P~-1)/2={p1—1)/2+ (po— 1)/2+ ... 4 (ps— 1)/2mod 2.
Ex. 23.9. Using EX. 23.8 and assuming (P,¢) = 1 where ¢ is an odd prime,
show that (P/q) = (¢/p1)...(g/p}(—1)F—V—D 7
Ex. 23.10. If P = pips...p; where the p’s are odd primes and it (G,P) =1
define the Jacobi symbol (Q/P) as follows
(Q/P) = (Q/p)(Q/p). .. (/s o
If ((}/P) = —1, show that 22 = @ mod P has no solulion. \
If{Q/P) = -HsMw&MﬁthMquwmqn%Mm&@mm
EX. 23.44. Use the preceding exercises to show if ¢ and P ?i,\ocld with
{Q.P) = 1, then
P/Q) = (@/PY~nm-vie-ni N
4
A

N
D
K7p)
Ky
L\
A\
E § >
s N\
*® \‘ >
s:s::“
™}
‘:s«
R
S
&
N/
b\
N\
L))
t»\\s./
A\ \.,)
)
x'\\’wl
O
\“/
O



P Arithelical symbols are wrillen die-
grams and geomelrical figures are graphic
formulas. —. HILBERT

CHAPTER 24

ADDITIVE ARITHMETIC

211, Introduction to additive arithmetic. The chief purpose
of the present lesson is that of bagkground for the following lesson.
For more detuiled discussion as,\ferjr good reference is the work by
Hardy and Wright. e

The principal problem © “the additive theory of numbers may be -
pbrased as follows: gi\r(ﬁx}\ cet of A of integers 6:,02,08; - - +» consider the
represenlalion of anfnteger n in the form 72 = Ga Fay o G
where s may or iy not be fixed, where the ¢’s may or may not be
different, and &¥here the order of the @’s may or may not be relevant.
Let A(n) hQ}he number of representations of 7 in this form. The
-simpler, Problom is to determine whether A(n) is positive; the harder
prﬂb}&muis to {ind the exact value of Aln});a related proble:m Wou!d

€%0'find the greatest restrictions on § under which A () will remait
pogitive,

Ags an example, let P be the set of positi\%e integers, h?t s be un-
restricied, let repetitions be allowed, and let order be (i!Jsregarded.
Let P(n) be the number of representations of n, as exl.ﬁained above,
for this particular problem. To explain Fuler’s description of P(n)

f.(thapter 24 is a basic chapter in the sense of providing background for the

following chuptor.

169
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we need to digress and explain an abbreviation often used in dis-
cussion of this subject matter.,
Adapting Ex. 3.2 we may write
=2l 4at a4 ..+ 27 =] — gletds |

If « is a rational number, say, such that 0 < |z! < 1, then for any
assigned rational number e > 0, there can be found an integer @ so.
that [x(¢+1¢] < ¢ whenever ¢ > Q. For this reason let us agree that
/(1 — 27 is a suggestive abbreviation for the infinile polynoiial
Adafdat .zt \

£ 2
28

Theorem: P(n)is the coefficient of z* in the product)
L —a)(l—a). (1= . o~

Proof:  The proof consists in applying the abov€ definition to each
of the factors 1/(1 — 2% for { = 1,2,...,n dal then forming the
product. To a term 2% of the product each TAT — «7) must contri-
bute one and only one factor; and by the Wlés of exponents if z7* con-
tributes as a factor to some «”, it is beehide j of the i’s are summands
in a representation of n; conversely, \ehch representation of n cor-
responds to a unique set of factors,ne from each 1/(1 — z), whose
product is 2, &N

For example, to find P3)we may compute the coefficient of
#* m the product 1/ z)(1 — 2)(1 — 551 — 2)(1 — &%) or
A+t + @+ ¥+, YA+ + ot 4. )1+ +...)
(I+2 4 .. )1 4+ 3 ...), where we have purposely relegated to
the ellipsis those powers of x which are not relevant. We find
P(5) = 7 andifiwe analyze the contributing terms and correspond-
ing represeptations, as an illustration of the argument intended
above, we Tiid

1-1.L80-2f or 5, gol.1-28lorl+4, 1.z%-af-1-lor2+4+3,

e l-lor 14143, zetelel-lorl+2+42
NG T lor L+ 14142, ghl.le1-lorl+14+1+1+1

"The product function of the theorem is described as a “‘generating
function” for P(n) and the theorem itself is described as part of 1he

“theory of partitions.” .

At first we feel pleased with the simplicity of the theorem, but if
we try the theorem as a means of finding P(n) for a large value of &y
we are liable to be disappointed: for if we try directly to {ind the
coefficient of 2", our work is equivalent to writing down all the repre-

sentations. However, by clever manipulation of the generating
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functions we might be able to find recursion formulag which would
make computation much cagier. But, in general, only the more
modern methods of analytic number theory have provided ways of
computing enumerallve functions like P(n) for large valaes of n.

We may specialize the above example by saying: let A contain
only 1,2,3; let s be unrestricted, repetitions allowed, and order dis-.
regarded. Then the generating [unction appropriate for A{n) is
/1 - &)1 — @)1 — &) with A{n) as the coefficient of «* in this
product. The argument is almost word for word like that in the pre-
ceding proof, cxcept that is restricted to the values 1,2,3. The éxs
panded form of the generating function begins as follows: O

142+ 2 4 30 + da* + 525 -+ Tx - 87 + 104 :{-:‘:f;,,
hence the values of A(m) forn = 1,2,.. L8 arein evidg@é.’ _

A problem amusingly related fo the preceding onells provided by
letting A* contain all non-negative integers, requiring s to be 3,
allowing repelition, and disregarding order'\’ /For we may show
A¥n) = A{n).

On the one hand, if n =u + 2 + 3 ‘ith u,pw non-negative,
then we may writen = ¢ -+ 8 + ¢ whesg'a = v + +w,b=2v+ W
¢ = w are non-ncgative, and suqh”t}iat azbhzec Conversely, if
n=gq+b+e, with abe non-fegative and arranged in the order
a2 b=e then n=u-+205 3w, where u=a—b v=0"106
w = ¢ are non-negativeg {

Thus when n = 6, we\have A(6) = T cases, 88 follows:
6=0-1+0.242.3 :;I-i+1-2+1-3=3.1+0-2+1-3=0-1+3-2+0-3

=_2-1+2.2+0,\3:=~,-L.1+1.2+0.3=6-1+0-2+0-3; _
and the correSponiding cases, as described above, showing A*(6)} =7,
are as follp’%:“

,6\~‘=.~’*z+z+z=3+2+1=4+1+1=3+3+°
\”\;~’=4+2+0=5+1+0=6+0+0-
24.2. Waring’s problem. In terms of additive arithmetic we
may describe cne of the most famous problems of the theory of
numbers, usually known as “Waring’s problem” although it scems
that there was probably no case of his problem for which Waring
could give a demonstration.

_Let k be a fixed integer, k = 2, a
of non-négative integers: 0%1%2% ..

d Tet A be the set of kth powers
.; then Waring’s problem 18 to. '
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determine whether there exists an integer s = s(k), depending on k
but independent of n, such that if we allow repetitions, we have
A{n) > 0 for all n.

In other words, for a given & we seek an ¢ = s(k), such that every
n can be written in at least one way as

n=a*+ &+ ... + 4t
where ay,&s,. . .,a, are non-negative integers, not necessarily distinet.

It was a triumph, more for analysis than number theory, thad
Waring’s problem was answered in the affirmative, for all 'k, by
Hilbert, one hundred years after Waring. But the proof is galexisten-
tial one, and ihe attempt to give an explicit value for s,\[or all k, s
not yet quile successful. Knowing that s exists, we cah sée that any
greater integer has the same property. Hence it islnatural to define
g(k) to be the least value of s, such that every niswepresentable as the
sum of g kth powers, but there is af least ong r Which cannot be rep-
resented by fewer than ¢ kth powers. Fou'cxample, it has been
shown that ¢(3) = 9, meaning that evegy intcgcr may be represented
as the sum of 9 cubes of non-negative \integers, and thal there is at
least one integer which actually rq({tﬁréS 9 cubes in this kind of repre-
sentation. However, it turns gutan this case that there are only fwo
integers n requiring the Full gofniﬂement of 9 cubes; for (his, and other
reasons, it is natural to d¢fine G(k) to be such that all but a finite
number of integers n cafi bé represented as the sum of G kth powers,
and infinifely many imtégers n cannot be represented as the sam ?f
fewer than G kth.powers. For example, the value of G(3) is still in
doubt, but is restfitted to the range 4 < G(3) < 9, by the facts given
above and theyadditional fact thal there are known to be infinitely
many integers requiring 4 cubes in their representation.

The ~.pﬁ1’y case of Waring's problem sufficientty simple for these
lessons is the case when k = 2; and in our next chapter we will show
.tl‘ta;it~§(2) = ((2) = 4. In other words, every integer n can be written
- Wat least one way as tho sum of 4 squares of integers, and there are
infinitely many integers which cannot be written as the sum of fewer
than 4 squares. For a discussion of the recent statas of the g(k) apd
G(k) problems, for other values of k, the reader may refcr to Hardy
and Wright.

24.3. Polygonal numbers, Let { be a fixed integer, £ = 3. Let
A be the set of all pelygonal numbers of order I, defined for i = 0,1,.. -
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by a(if) = i{2 + ¢ = N — 1}/2. Lets(f) =1 let repetitions be
sllowed and order disregarded. Then the Cauchy-Fermat result is
that A.(n) > 0 [or every positive integer n. Thus every n is the sum
of three triangular numbers, four squarc numbers, five pentagonal
numbers, etc.

The numbers receive their geometric description because, with the
exception of 0 and 1, which occur in every set, they can be described,
for a given {, as a nest of regular polygons, each of ¢ sides, homothetic
with respect to a common vertex, and having, successively, i = 2,3,. ..
points on a side.  For if we count the number of points in the polygeny
at the stage where there arc i points on a side, we obtain the p@)}ybi
onal number a(i,f), inasmuch as the sum of the terms of thé arith-
meiic progression D

L1+ (¢—2,1+20-2), ... 1 -RE-2)
is precisely a{i.i). \ .

For example, the triangular numbers a(,i~,3‘)}‘- (i +1)/2 are
0,1,3,6,10,15,21,. . .; and cxamples of the «Ganchy-Fermat theorem
arc a3 follows: O :
18=15+3+0=6+6+6, 19=1513k2=10+6-+3, 20=10+10+0.

Since it furns out that the square frambers a(i,4) = i* are, indeed,
the squares of integers, this pardicular case of the Cauchy-Fermat
fheorem is the same as the Wating problem for & = 2, 50 the proofs
~of the next chapter ate ,a'ﬁ)ﬁﬁcable. A modern discussion of the

Cauchy-Fermat theorem®Jor all values of ¢, can be found in Dickson’s
“Modern Elementary. Theory of Numbers.”

NS

EXERCISES
: "\ W

EX. 24.1. H')\ contains 1 and k, if 5 is anrestricied, if repetitions are allowed
and oiler disregarded, show that A(n) = [n/%] + 1 lo three ways:
A4\DBy direct enumeration;
2) by an appropriate generating function;
(3) by considering 4*(n), where 4* consists of all non-negal
#* = 2, repelilions allowed and order disregarded.
C EX. 222, If A conlains 2 and 3 with s unrestricted, repetitions a]lmfed
and order disregarded, show that A(n) = [n/6), o [7/ 6]+ 1 according

ssnrn=1orn=1, mod6. e s
EK. 243, If A contains @y.as. . -»@x Where 0< 1< {Ig'< ...'< ay, if 818
unrestricted, if repetitions are allowed and if order s F’Oﬂmdered’ show
that by defining A¢0) = 1 and noting that A(n) = 0 for B = L2,

{ive inlegers,
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a; — 1, then all other A(n) may be computed by the following recursion
formulas:
Ar) = A(n — an) +An—a)+ ... T AR—a), aZ=n<ay
=12, k-1
A(n)=A(n—~a1)+A{n-a-g)—I— cov ot Aln — a)), ar=n
{Hinl: Arrange the representations of n in lexicographic order.)

EX. 24.4, In the special case of EX. 24.7 where A conlainz only 1 and 2,
compute some of the A{n}—these are the Fibonacel numbers. "
Ex. 24.5. If (anas...ax) = dand a; = A,d, let A* contain Ay As, xSl
then under the conditions of EX. 24.3 compare A{n) and A*(nl mﬁkmg

appropriate use of 12.1.

N
ExX. 24.6. Show (a) geometrically and (b} algebraically: ™
(@) 4a(i2) + (i + 1) = a(i + 1.6),
(b} (1 — 2)a(i,3) + (i + 1) = a(i+ L8); R

(a) (i) + a{i — 1,3) = ali,6),
() a(if) + ali — 1,3) = a(ii + 1); \
(@) a(i,6) + 1 = 2a(i,3) + ali — 14), /N
(b) a(1,28) + 1 = 2a(i,f) + ali — LA\~
Ex. 247, Torl = k= n, define P(n,k) 1.;0])@'x the number of representations
ofnintheform n= g, +a+ . A e whercb 2w as ... = h
and { = 1. Show that P(n) = fP(n . Ifn/2<kZn, prove ihat
Plokl=1 1=z k= [nj2j prove that Plrk) = 14 ZP(r— i,
summed over k < i = [n/2) Also prove that P(nk + 1) = P(n.k)—
Pin — k).




W The majorily of ideas we deal with were
congeived by others, often cenluries ago. In
a greal measure, i 18 really the infelligence
of other peaple that confronts us in science.

—D. MACH

CLAPTER 25°

SUM OF FOUR SQUARES L

95.1. Foar lemmas. In this lesson::jsav‘c'x will present a proof,
essentially due to Fuler, that everg"ﬁosftive integer is the sum of
four squares of integers; i.e., In thetlanguage of the preceding lessom.
we will solve Waring’s problem, ﬁvﬁen k = 2, with the very precise
result that g(2) = G(2) = 4&{To this end the following lemmas will
be useful. ¢ \

L.1: Itis true tha‘t\‘,}@) =G(2) z 4

Proof: Considgsf" the following able:
It 270,1,2,3,4,5 6 Tmodd,
then ,\\:ﬁ’g 0,1,4,3,0 141 mod 8, respectively.
CO’“SB.CII;i;%nLIy, a study of the various cases shows that if x,y,z are
auy(three given integers, then

) 4y 2= 0,1,2, 9 4 5 orfmoedd
Therefore there are infinitely many positive integers of the form
8m < 7 which are not representable as the sum of threc squares ol

integers. In the language of Chapter 24, this is L.L.

L.2: If every prime is the sum of four squares, then every ¢om-

posite integer is the sum of four squares.

T
Chapter 23 is a basic chapter.
175
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Proaf: It is a matter of patience to verily the lollowing remark-
able identity found by Euler:

@ 4B ¢ 4 et + b el +d) = A B (4 P
(25.1) A= ad + bb]_ + ¢ty + ddl, B = abl — h(ll + Cd] — dﬂ],
C=uac, — bdy — cay +dby, D =ad, -+ be, — cby — day.

From this identity L.2 is an immediate consequence, for ¢very com-
posite integer n is the product of primes and by application of (255, -
an appropriate number of times, a representation ol n as thg'sum of
four squares can be obtained il representations are knowa for each-
of the prime factors of n. \ >

L.3: If p is an odd prime, there cxists a sgli;ti(m in integers
zymof @ 442 + 22 = mp with 0 < m < pNO)°

Proof: First we show by contradiction, thatl there is a golution
z,y,z of the congruence z? + ¥ + 72 ={0"mod p, other than the
trivial solution % = y = z = 0 mod g\ WPor if we suppose there is no
solution of the given congruenge, “except the trivial solution,
then (using the Legendre symbol of Chapter 22) we must have
{(=1/p) = —1. Otherwise, .\}{{é' would be able to find y so thal
¥* = —1 mod p, and we would have 12 + y? + 0* = 0 mod p and &
non-trivial solution. Again, if for any integer a 2 0 or —1, mod p,
we assume {(a/p) =\1;{"v€"e must have (—(e 4+ 1)/p) = —1. Other-
wise we would be able'to find z,y,z witha? = 1,52 = q, 22 = — (@ + 1)
mod p and would’have a non-trivial solution of z* + y* + 2 ="
‘mod p. Combining these observations and using G.22.3 in Chapter
22, we ﬁ;ld,ﬁlat if (a/p) =1, for an a £ 0 or —1, mod p, th.en'
(@ + ) = (~1/p)(— (@ +1)/p) = (—1)(~ 1) = + 1. Begin-
ning, With the case @ = 1, where (1/p) = 1, this would imply by m-

_duetion that every non-zero residue class mod p is a quadratic residue
. od p which would be an obvious contradiction of G.20.

Having shown the existence of a non-trivial solution .7 of the
congruence, we may suppose this solution replaced by X,Y,Z where
X=z2 Y=+y, Z= 4z mod p with the signs so chosen th.at
I X1<p/2,1Y|< p/2, |Z| < p/2. Then X,Y,Zis also a non-trivial
solution of the congruence so that '

0 <mp=X*+ Y242 < 3p2/4 < p?, hence 0 <m < P-
‘L.4:: If pis an odd prime and if 22 + 32 + 2 + w* = mp with
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] <m < p, then there exist integers iy, and M such that
gt Ay 4t o’ = Mp withl = M <m.

Proof: The proof is divided into two cases according as m is
even, ot odd.

When m is even, then ®,y,z,w arc all even; or all are odd; or two are
even and two are odd, say z and . With this agreemenk we may
use the hypothesis to write
(+v)/27 + (@ — /20 + (& +w)/27 T (o — w)/2)* = /22 &
Hence z = (2 +3)/2, v = (& — vi/2, n= (z+w)/2,w=(E— w)/g{
and M = m/2 are integers satis{ying the conclusions of Led. ™

When m is odd, we may use the modified division algorithm for
least absolute value remainder to write ~‘ D

c=amta, y=bm-tb, z=cm"Tec wedm - di,
where |am|< m/2, |b]<m/2, ley] < m/2, (] € m/2.
Substituting these expressions into the given quation and making
use of the symbols introduced in (25.1) W€ fin
(95.2) @ + b + ot + df + 24m (@ g2 4 ¢ + dBm?t = mp.
Hence there cxists a non-negative iy.tégér_ M such that _
(26.3) o 4 bt efF df = Mm.

Furthermore we cannot has® M =0 for this would imply that
a=h=c=d= 0; theftw? would divide 2 +¥* + £ t w' = mp,
and m would divide p;bag 1 < m < p and p is a prime, 50 this case
cannot oceur.  Singe(Wwe know ait + 0° + o + dit < 4(mP/4) = m?,
it follows that MG (25.3) satisfies M < m. Putting these results
together we hawe'1 < M < m. Finally, from the relations (25.2)
and (25.3) ‘(’el\ﬁild on dividing by m that

o MA24+(@+b+e+dm=p

Ifaé Thultiply this last equation by M and employ (25:5) and (25.1)
we, gbtain ' _ .

2 &

M+ 2AM + As + B2 + €2 + Dt = M.
(M + A) + B + €2 + D* = Mp-
Thus 2, = M + 4, 1 =B, = G, wm =D, and M arc integers
satisfying the conclusions of Lu4. ' :

25.2. Representation by four squares. The preceding Jemmas

allow a precise disposition of Waring’s problem when k=
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Theorem: For representation as a sum of squares G(2) =
g(2) = 4.

Proof: Tor every odd prime p, L.3 guarantees the existence of a
solution of 22+ + 24+ w=mp with 1 =m<p. I m>1
ther L.4 allows a descent in a finite number of steps (say with
p>m>M=M>M,> ... > M,=1) to the situation

e ‘|‘3:c + it = p. ~

In other words, this shows that every odd prime may be repre-
gented as the sum of four squares. The only even pnme\Kmay
be represented in the form 2 = 12 4+ 12 4 0% 4+ 02, Since ¢very ‘prime
can be represented as the sum of four squares, L.2 gua}*antees thai
every composite number may be represented as, the sum of four
squares. For the unit 1 we have 1 = 12 - (2 +.{}2‘+ 92, Thus we
have shown that every positive inieger may h&‘represented as the
sum of four squares. In other words, (2), .

If we now apply L.1, we have 4 = G(S; < g(2) < 4. Therefore,
we conclude that G(2) = g(2) = 4. AN

According to W. W. R. Ball, thegnental calculator Jacques Inaudi
could express numbers less thans @0) as a sum of four squares in &

~ minute or two. Such ability is gettainly unusual and cither depended
on unusual memory or om, the application of some frick process,
certainly not on lollowmg through the processes indicated by the
above proof, for in LIQ\(;ase of large primes it is not so easy to produce
a sclution of the L¥pe whose existence is guaranteed by L.3.
ifn= u-N, It 15 cl(,ar that a representation for N, say

S =o'+ + 2+’
leads to ﬂ»\mpresentatlon for n, say
N no=X24+ Y2470+ W

with, X = ur, ¥ = uy, Z =uz, W = mw. Thus if the problem i
mengly that of finding one representation, it suffices to deal with an
\N‘:ﬂmt is square-frec.
For example, if n =351 = 9.39, we can write
N=3=06412F12512

and then we can easily obtain 351 = (18)* 4 32 4 32+ 3% But We

can alko write 27 = 5 -+ 12 - 12 4 0% and 13 = 3¢ + 2% + 0* + 0%

and apply (25.14) to obtain

=15+24+04+0=17,B=10-34+0—-0=7,

6=0-0-3+0=-3,D=0+4+0—2—0=-2

go that 351 = (17)2 4+ 72 + 32 + 22,
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The question of the total number of representations has received
its neatest answer in the case in which the set A is described as
including the squares of all integers, counting (—)? as different
from (++2)? except, of course, when z = 0, requiring ¢ = 4, allowing
repelitions and considering order. In this form of the problem
Jacobi has shown that

A(n) = 8a(n), whenn is odd; :

A(n) = 240(m), when m is odd and r = 2°m with @ = 1. )
Here o{n) is the number-theoretic function of Chapler 8 denoting
the sur of the positive divisors of . O\

For example, to explain A(L) = 8, we meed to realize thed the
representations involving {1,0,0,03, (—1,0,0,0), (0,1,0,0, (0;7-1,0,0),
0.0.L0), (0,0,—L0), (6,0.0.), (0.0.0,—1) as (@,y,za0art being
counted as dislinet. From this point of view, we find that 351 has
A(351) = 8-40-14 = 4480 representations. Frot e point of view
where negative solutions are not used and orglgrtiﬁ?disregarded, there
are just 14 representations of 351, as follqwéx{“

(18.3.3,3), (18,5,1,1), 17,7.3.2), 17iem.D), (15,1121,
(15,10,5,1), (15,9,6,3), (14,11,5,3504,9,7,5), (13,13,3,2),
(1311.6.5), (13,10,9,1), (11,1510.3), (11,10,9,7).
It is easily found that ten of these solutions, under choice of sign
and permutations, each jead to 16-24 = 384 of the solutions con-
sidered by Jacobi; the e'\élré three of these solutions which each lead
t016-12 = 192 of Jaqro})i’s; and one solution which gives 16. -4 = 64
of Jacobi’s. The Gfand total of 3840 + 576 4 64 = 4480 is in agree-

ment with Jap@l)i’s formula.
For disilisibn of Jacobi's enumeration forpaula, the reader may
tefer to Pigkson’s books, ot Uspensky and Heaslet.

~O"  EXERCISES

\ }

EX. 25.4, Verify Euler's sdentity (25.1). ' } L

EX. 95.9. Show that no integer of the form 4*(8m+ 7), k= 0, can be a
sum of three squares. (Hinf: If &> 0, make an argument by descent
to the case k — 1; for k= 0, use L.1.) .

EX. 25.3. Note p = 151 = 7 mod 8. Tiustrate tbe proof of L.4, starling
with (20)? - 72 4- 2% = 3-151.

ExX. 25.4. Show (a2 4+ b*+ 2= (a®+ B —

lam).

*

a2+ (2ac)” + (2be)* (Cata-
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Ex. 25.5. Find all representations of 408 as the sum of four squares,
EX. 206, Ifzy = &2 = 23 = x4, show that

6(z + 2® o+ m? e = 2((z F 2) (@ 2

summed over the six cases where ¢ < j.
EX.25.7. Witen=6m+r0=2r<ém=at alta?taia=
ol 4 x2® + @a 4 za? = 1,2,3.4; r= r-1%, Then apply g(2) = 4
and EX 25.6 to show 15 < g{4) £ 53.



CHAPTER 26°

P 7 do not knew what I may appear to the
world, but to myself I seem o have been only
a boy playing on the seashore, and diverling
myself in now and then finding a smoother
pebble or @ pretiier shell than ordinery,
whilst the greal ocean of fruth lay all undis-
covered before me. _ —1. NEWTON

SUM OF TWO SQUARES : W\

7 \d
v

2.1. Fourlemmasand a theorem. Ffér_ri the preceding chapter

it is clear that not every Integer may.b’eirepresented as the sum of

two squares, so the object of

»

the present lesson is to establish just

which iPtegers may be so represented. The lemmas which follow
and their proofs are almost gg{allel to those of Chapter 25.

L.1: No integer of thQéOf

m Am + 3 1s a sull of two Bquares.

. ﬁfjﬂof - If we consider a table in which z = 0,1,2,3 mod 4 implies
=0,1,0,1 mod 4)Fespectively, it is clear that for given integers T

and y, we mustave @* + ¥
immediate cokis}cfuence.

L.2: 1If the prime factofs

= 0,1, or 2 mod 4; whence L.l ig an

of a composite pumber 7 may each be

writte"as"the sum of two sguares, then 7 is the sum of tWo squares.

Proof: Tt is easy to verify

the following identity:

26.0) (@2 + b (as + be) = A® + B, A=om + bby, B = aby, — bax

From (26.1), applied several
1B correct.

L.3: 1If pis a prime of the

times if necessary, it follows that L.2

form 4K + 1, there exists a solution in

111165‘31”3 zymof ot 432 = mp with 0 <m<p

%
Chy tey i hapte:
AN 26isa supplemcnt.ary chapter.

181
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Proof: In Ex. 22.6 we have shown that (— 1/p) = +1 i
p = 4K + 1, hence there exists an integer y such that 1 4y2 =0
mod p. Wemayfind ¥ = + ymod p and such that | Y| < p/2, then
0<mp=1+47Y: <1+ p2/d <p? 500 <m < p. Thus the inlegers
1,Y, and m safisfy the conclusions of L.3.

L.4: If p is a prime of the form 4K + 1 and if 22 + 32 = mp
with 1 <m < p, then there exist integers x1,y; and M such tl@t
2+ wnt=Mpwithl £ M < m.

Proof: If m is even, we must have z = v mod 2 and'\{e\m\ay re-
writc the equation of the hypothesis in the formy >
(@ + 3/ + ((z ~ ¥)/2? = (m/DP)
to see that o = (@ +¥)/2, y1 = (x — ¥)/2, M&m/2 satisly the
conclusions of L.4. \/
If m is odd, we can use a modified division ‘algorithm to write
r=am+a, la| <m/2; y = BT by, [h] < m/2.
If these expressions are substiluted i{the given equation, we find,
using the symbols of (26.1), that , \J
@2 -+ b? -+ 24m .—je’:("aZ + Bm® = mp.
Hence it follows that there ig“a“non-negative integer M such thal
t? -+ bt = Mm, and we may.write
M 24 4 (a2 + bm = p,
M + 2AM + (@CB8)(a? + b) = (M + Ay + B = Mp.
If M =0, we would have @, = by = 0, sa that m® would divide
2t -ty = mp aidrm would divide p. Since p is a prime and
1L <m < p, is/is a contradiction. Hence we have 1 = M. But
also Mm =@ + b2 < m¥/2 < m% so M <m. Thusz =M +4,
= B\a}}\dM are integers satisfying the conclusions of L.4-

méﬂrcmz Every prime of the form 4K + I can be represented
_agibe sum of two squares.

A% Proof: By L.3 we may find integers ,y so that z* + y* = mp;
1 =m <p. In case m > 1, we may apply L.4 a finite number ({f
times (say withm > M = M; > M, > ... > M; = 1) to “descend
to the situation where 2,2 + y2 = p.

26.2. Representation as a sum of two squares. In the preced-
1ng section L.1 shows that no prime of the form 4K + 3 is the sult
of two squares. But since, for example, the product n of two such
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primes, say n = (4K + 3)(1Ky + 3), is of the form 4T + 1, further
nvestigation is required to see il such an 7 is representable as the
eqm of two squares. The answer, for this example, turns out to be
yes, if K = Ki; and no, if K 52 K. The general cuse is discussed in
what follows. '

Let us say thal n has a proper representation as the sum of two
squares if and only if there exist rclatively prime integers © and ¥
such that n = &* + ¥ :

Theorem 1: TI n is divisible by a prime p of the form 4K -3,

 then » has no proper Tepresentation as the sum of two sguares.’ )

Proof: 'The proof is by contradiction. Supposc there (is:'g} proper
representation n = x* 4 ¥% (z,y) = 1. Thenwe must haveXxp) = 1.
Otherwise, we would bave p dividing = and n, and hemg?—?i’, thus deny-

~ing (z,y) = 1. But with (z,p) = 1 we can solve Q=¥ mod p for z
a3in G.8 0f 19.2. Thenn = ¢ mod p shows xﬂ-ﬁs\y? =21 + u) =0
mod p. Since (w,p) =1, the cancellation Jaw applies to show
14 ut=0mod p. Butihisisa contradittion, for in Bx. 22.6, we
have shown ( — 1/p) = —1 for pripes of the form p = 4K + 3.

Theorem 2: T n = pm, whete p is a prime of the form 4K + 3,
where ¢ is odd and {(p.m) = ,1,“I;Hen n bhas no rgpresentation as the
sum of two squares. RN

Proof: The proof 8.by contradiction. Suppose there is a repre-
sentation n = o 438 Let (z.7) = d, %= X_d, y = Yd. Then
(X,Y) = 1 andn'& N Since p° divides n and ¢ is odd, it follows
that p divides V. But N = X2 + Y* with (X,¥) = 1, and fo have
N with susHa) proper representation, yet divisible by a prime p of the
forma 4‘K3¥ 3, is a contradiction of the preceding Theorem {.

mThﬁdl’em 3: A posilive integer is Tepresentable as the sum of
Swgsquares if and only if each of its prime factors of the form 4K +3
Appears to an even power.

Proof: (A) For the unit 1, we have 1=140 For the only
even prime 2, we have 2 = 12 + 1% Yor every prime of the form
4K 41 a representation as the sum of iwo squares exists by the
theorem of 26.1. An even power p** of 2 prime of the form p =
4 +3 is a sum of two squares since p* = (p*p + . Then by
L.2 of 26.1, every composite number 7 in which prime factors of the
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form 4K -+ 3 appear only to even powers is representable as a sum of
two squares. This includes the case where such prime factors are
abseni, if we interpret p® = 1 with the zero exponent as an cven
power.

(B) If even one prime of the form 4K -+ 3 appears to an odd
power, and not to a higher power, as a factor of n, then n is not
representable as the sum of two squares; for this is the coutent of
the preceding Theorem 2. ~

For example, in our previous examination of n = 351 no tepresen-
tation as the sum of two squares was found. This could¢have been
predicted since 351 = 3?13 with the prime 3 appearing\to an odd
power. On the other hand, we have examples likg~117 = 313 =
92 + 62 (where only improper representationsg are available, sec
Theorem 1) and 65 = 5-13 = (12 + 23)(2? +3¢))= 8 + I? (to illus-
_trate L.2). \

An elegant result, due to Jacobi and, di?c’ussed in Uspensky and
Heaslet, shows how to enumerate the relﬁ'escntat.ions of n as the sum
of two squares, distinguishing ( — £»Trom ( + z)? and considering
order. Jacobi considered the pgsitive divisors of n separated into
four classes according to their,‘;esidues 1,2,3.4 mod 4 and indicated
the number of divisors In e:iqh of these classes by 7 (n), m(n), 73(n)y
r4{n), respectively. (In.this notation the +(n) of Chapter § would be
given by =(n) = n@)+ na(n) + r3(n) + ra(n).)  Jacobi showed
that there are A(7)= 4(ni(n) — 74(n)) representations of n as a sum
of two squares. (" '

For examplé if n = 351 = 3513, we find =(n) = 4 and 75(n) = 4,
corresponding to the sets of divisors 1,9,13,117 and 3,27,39,35L
TESP%@Y; so A(n) = 0 and there are no representations. It
n =J2= 2%, we have ni(n}) = 2 and =(n) = 1, corresponding t0
the\sets of divisors 1,9 and 3, respectively; so A(n) = 4, the appro-
y mj)r\late representations being( +6)2 + (+6)2 Ifn = 65 = 5-13, then

n(n) = #{n} = 4; so A(n) = 16, the appropriate representations

being (£8)? + (£ D2, (12 + (£8)% (£7)* + (x4 (147 + (2T

It is more difficult to discuss in entirety the result concerniog
" tepresentation as the sum of three squares, although EX. 95.9 estab-

lishes the easier part of the proof. The correct theorem is that a

positive integer n is the sum of three squares of integers if and only

if n is not of the form 4¥(8m + 7), k = 0. Expositions of this result
can be found in the books of Dickson or in Uspensky and Heaslet.
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96.3. Representation as the differcnce of two squares, We
shall let Q(7) indicate the number of solutions of the Diophantine
equation 2* — ¥ = n, where n is a given positive integer and we
require & and y to be positive integers.

Theorem: (a) If n = 2 mod 4, then Qn) - o
b Hn=lorn=3 mod 4, then (n) = [r(n)/2].
(¢} If » = 0 mod 4, then Q(n) = [+(n/4)/2}.

Proof: (a) We note that according as z = 0,1,2,3 mod 4,,we
have «? = 0,1,0,1 mod 4. Hence for any given integers z and(y; we
must have 22 — y* = 0,1,0r 3 mod 4; but we cannot bave 22 ~y* =2
mod 4. Therefore Q(n) = 0 when n = 2 mod 4. N

Asolutionz > 0,y > 0ofn=2"—%" = (x + @~ y) implies
a factorization of n in the form n = dd' whereod = z +y and
#=i&—ysothatd+d = 92 and d — & =2y It follows that
d>d > 0and d =d mod 2. Conversdy\,’ 4ot every factorization
n=dd with d>d >0 and d= d’ >tholt 2, there is a solution
z=(d+d)/2 and y = (d — d)/230F ‘he Diophantine equation
withz > 0and y > 0.

(b) I n = 1 or if n = 3 mod\& then n is odd and both.d and d'
must be odd so d = d’ mod/2.is satisfed. Ifn is not a square, every
factorization n = dd’ hasd(# d’. There are 7(n) choices for d, where
7(n}is even (EX. 8.3) ;K@:d'éxacﬂy r(n) /2 choices of dwithd > 0;’ > 0
Hence as explained’above, there are the same number of solutions n
positive integers @f the Diophantine equation; so Q(n) = )/ 2. If
n Is a squarg, there is one, but only one, factorizarion 1 = n
Which d =@ which would not lead to & suitable solution mth?' > 0.
In this ~C§'§ #(n) is odd, go the number of suitable factori;a?;ons of
n = ddiith d > &' > 0, each leading to @ colution of the Diophan-
‘ fie equations and all solations 80 obtainable, is given by Q(ﬂ:): =

(T%”) — 1)/2. The two cases are readily combined by writing

Q(n) = [+(n)/2].
— s M = i th Tl 1) at
{¢) If n = 0 mod 4, then n 18 even and if © ;f.kir ’d ;I:i’c:n?)d 2

least, of d and ' must be even; then in order t© gati
both d and @’ must be even, say & = 2D, &' = oy'. Then the number
of solutions of the Diophantine equation depends exactly on the;
number of factorizations n = 4K = @D)y(2D’), or nfa=K= DD
D>’ >0, Asin part (b), if K is not 2 square, we find o) =
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(K)/2; but if K is a square, Q(n} = (=(K) — 1)/2. Both cases are
correctly described by Q(n) = [+{n/4)/21.

For example, with n = 351 = 3313 = 3 mod 4, since 7(n) = 8, we
find ¢(n} = 4 solutions. Corresponding 1o the lactorizalions 351.1,
117-3, 39-9, 2713, the solutions z,y arc 176,175; 60,57; 24,15; 20,7.

EXERCISE
SES A
vx. 26.4/. Show that {(26.1) is a special case of (25.1). \
EX. 26.2. Find all representations as a4 sum of two 8quar¢ns fob( 0 2

(b) 221, (c) 1225.
rx. 26.3. Find all representation as a difference of two gql}aré% for {a) 426,

{b) 427, {(c) 428, (d) 429. (¥
EX. 26.4. Ifaisa given positive inleger and posm\ ﬁm}:gzers b, arc required
so that

B¥—at=celc+ 1);:. o
prove that the number N{a) of qolution*‘;'b ¢ is given by

Al T
Na) = T(—“;J 1.
EX. 26.5. Find the number of P'%rﬁlagoreau triplels of a given side.
™
L\
O
NS/
Ve \d
i"\.{'
O
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INTRODUCTION TO QUADRATIC FORMS
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27.1. Equivalent functions. Tt will.be evident that this chapier
presenis generalizations of the maﬁéﬁial in Chapter 26, but it may be
necesgary for the reader to review carcfully the ideas of Chapter 11
before proceeding, in partiqular' 11.3 and 11.4

In the present section~Sfunction” will be used to mean & poly-
nomial f(z.y) in two m{iables with integers as coefficients; I other
words, f(z,y) is the"sum of 2 finjte number of terms .ot the type
ra'y!, where r igd@anteger and s and £ are nop-negative integers.

A f‘lTIC’f-iOILKm,y) will he said to represent an integer n if 3{1(1 only
if there exisf3) pair of integers .Y (Le., alattioe point of 5z as 10 11.3)
such th vy} = n. An integer » will be said to be pmper_ly repre-
sentedWJf and only if there is & representation flx.y} =1 in which
‘”‘ﬂiﬁy are relatively prime. If & function is such that it represents

sery mteger, the function will be called universal- . _

A function F(X,Y) will be said 1o be_cqaimleni to a i;unctdon
J(zy) if and only if there exists a Jinear transformation T of the
lattice group G of Ss, say,

“T: g aX 4 bY, y=cX+dY, ed—= +1,

such that f(z,y) = F(X,Y).
T

*Ch : .
1apter 27 is a basic chapter.
187
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One motivalion for this terminology is provided by the following
theorem.

F.1: Equivalent functions represent the same intcgers.

Proof: We bave shown in M.5 and M.6 of 11.3, and in the dis-
cussion of 11.4, how the linear transformations of S; which are com-
pletely reversible in integers arc precisely those of the lattice group
of 8:, namely, thase of unit determinant. The definition of equiv afenit
functions is phrased 1o take advantage of this property. ¢ FOI' i€
fle.y) = F (X,Y) and if X,Y are integers such that F(X, Y) S n, ’then

the mtegers z,y defined by (z,y) = (X, )T are such th‘lt f(:r y) =n.
Conversely, since T is of unit determinant, ther& eXIStS an inverse
transformation:

T X=de—by, ¥Y= -ca:—[—ay,\,da—cb= +1
such that F(X,Y) = flz,y). Hence, if Q'y\a're integers such that

J(x,¥) = m, then the integers X,Y defined by (X,Y) = ()T " are
such that F(X,Y) = m. Combiniag these observations, we find
that the totalities of integers ref)reéented by equivalent functions
Jizy) and F(X, Y} are exactly the same.

For example, if we extend the discussion of 26.3 to all integers
z and y, we find that, _{{x y) = 2® — y* Tepresents all integers 7,
except those for w JQh n=2 mod 4. Using T: z=2X — 3Y,
¥ = X — Y whichhhas determinant +1, we find

flay) = @X < BT — (X — ¥)? =3X7 — 10XY 4-8Y2 =F(XY).

By F. 1 we! dan assert that F(X,Y) also represents all mfegerg ”’.
except thgse for which n = 2 moed 4. Thus from f(13,7) = 120, we
can gqpn})ute (13,7) T = (8,1) and assert that F(8,1) = 120.
\1‘“\-2 Equivalence of functions is an equivalence relation.

"Proof: The proof follows close]y the known properties of the
lattice group G of S; as given in M.6 of 11.3. With these group
properties proved it is easy to establish that equivalence of functions
has the four properties of an equivalence relation. .
(1) Determinative: given f(z,y) and F(X,Y), either there is of 38
not a T of G such that f(z,y) = F(X,Y).
T

(2) Reflexive: the group G contains I and f(z,y) = f(&.¥)-
I
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(3) Symmelric: given that f(z.y) = F(X,Y)fora T in G, then there
is T-1in G such that F(X,Y) T—’—-_lf(z,y).
(4) Transitive: given that flz.¥) = F(X,Y) and that F(X,Y) =

F(X,Yy) with T and U in G, then TU is in G and 18 such that

flay) = Fi(X, ).
TU

From F.2 it follows that equivalence of functions divides all func<\
tions into mutually exclusive classes of equivalent functions. Frem
F.1it follows that all the functions in such an equivalenge’ cass
represent exactly the same integers. Now to foliow out the,program
outlined in 11.4, we should seek for each equivalenceclass some
representative, characterized by its simplicity and, @i possible, so
described that it is canonical, i.e., so that in au quivalence class
there is one and only one function of this description.

In ihe next section we shall consider cgqx i equivalence classes

* for which this program can be achieved ./

27.2. Posilive definite binaryl ’(iﬁadratic forms. A binary
quedralic form is a special function® of the type

. f(zy)&a + by + ¢
where, of course, a,b,c, ate)given mtegers, and since they completely
determine the formy che\ahbreviation f=labelis convenient.

F.3: A functioh é;;fui\ralent to a binary quadratic form is a binary
quadratic forp

Proof ; \I;EtT be a linear transformation of the lattice group G
of S; defined by
T o= aX4bY, y=aX+dl, b by = 1.
"Fhen by substitution and expansion we find [a,b,c] ? [A.BC),
A = qa? + bajey + col? = ! (as.61)
(271){'8 = 2(1(1]1]1 -+ b(ﬂldl -+ blcl) + 2C_C1d;|. -—"f((h + bt + dl) ~A- C’
G = ab12 + bb1d1 + Cd] = f(bl,dl)o
Si.l'lce ABC arc nte i bi uadratic form.
s oers, [A,B,C] is a bnaly quacte™
The discriminant of a binary quadratic form a,bhe 18 defined to be
the integer b2 — 4ac. '
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F.4: Equivalent binary quadratic forms have the same dis-
criminant,

Proof: A straightforward, but tedious simplification, starting
from (27.1), will show that B2 — 4AC = b* — dac. However, a
simpler proof is obtained by writing (27.1) in matric form, as follows:

[ ST ) h 2a dl [ B 24
SET ) W S L S N
oL b], dl 2e b b]_ 431 20] B

If to the matric equation (27.2) we apply M.7 and note thétYeven
though matric multiplication is not, in general, cc)mmpt{l‘tive, the
determinants are commutative in their multiplicaligny then since
(mdy — bier)? = +1, we find, rather elecantly, tbat 5 — dac =
B — 44C.

For example, we showed above that [1,0,—~N‘and [3,—10,8] are
equivalent. Toillustrate F.4 we can now ch‘aiﬂ}that 02 - 41(-1) =
4 = (—10)* — 4(3)(8). O

Let us deseribe a form as positive definilé if it represents, in addition
to zero, positive and only posilive integers. If therc are such forms, -
then it follows by F.1 that all fofms equivalent 1o a positive definite
form are also positive definitel

F.5: Aform f= [a,{{,{j“is positive definite if and ounly if
a =10, c%‘.ﬂ, @ +et>0, B — dac =0

Progf: (A) Tt ®clear that a positive definite form must not bave
a < 0, for then f{1,0) = a would be a negative integer re}f’f“s"”t_cd
by the formysitnilarly, since £(0,1) = ¢, it follows that a positive
definite fofm must not have ¢ < 0. If g = b =¢ = 0, the form
representtsh only zero and is not positive definite; if a =¢ =10 and
b 5 03%then f(z,y) = bzy so that f(1,1) = b and f(1,—1) = —b, 50
) su\bﬁa form is not positive definite; therefore a positive definite form
mast have at least one of ¢ and ¢ positive, i.c., a®> -+ ¢ > 0. ij]?l '
f(b,—2a) = —a(®® — 4ac) it follows that even with a > & 1t 5
necessary to have B — 4ae < 0 to make f positive definite. Ha=0
but ¢ > 0, then f(—2c,b) = —cb?, hence it is necessary tO have
B — dac = b = 0 to make f positive definite. Both of these cases
are covered by the requirement & — 4ac < 0. .
(B) Conversely, if the conditions mentioned in F.5 are satisfied;
_then f@,y) = [a,bc], in addition to zero, represents positive all
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only positive integers. First assume @ > 0, then f(1,0) = a shows
that f represents at least one positive integer. Sccondly, from the
following identity:

(97.3) Adafley) = dalax? + bry + ey = Qaz + by)? — (b — dac}y?,
we see, since by hypothesis 82 — dac < 0, that the right-haad mem-
her of the identily is nen-negative; since a > 0, it follows that f is
pon-negative. Finally, if @ =0, then b= 0 and ¢ > 0, so that
fley) = ey* is obviously positive definite.

We will deal henceforth with positive definjte forms and for each{
equivalence class of these forms we can establish a canonical fm:ng? a3

described in the Tollowing two theorems and ¥X. 27.9, N\
F.6: Any given positive definite form = [a,b,c] with b Ddac < 0

is equivalent to a form F = [A,B,C] in which I,

@7.4) 0<B=A and 0<A=GEO

Proof: By the hypothesis b* — dae < 0 and{&y ¥.5 it follows that
both ¢ and ¢ are positive. Both are repres’e@tvcd by f. Hence therc
is a least positive integer A represented By f4nd an upper lirit on its
~ value is already available. By (27.3),’01: its analogue for 4ef, the
value of A can be found in a finite umber of steps. Such an A has a
proper representation by f. Rorif we suppose [ (zo,ye) = A with
(@y0) = d and x, = Xod, Yo —,d, then f(Xo,Yo) = A/d: Hence
if d > 1, then A/d’ would\Be a positive integes less than A repre-
sented by f. Thcreané\‘wE nust have (roys) = 1. By the Fuclid
alrorithm we know ghere exist Integers r and s go that 2y - Yo = 1.
Then T x = g XHsY, ¥y = yvoX +rY, isa Tinear tcranstqmatmn
holonging to she.attice group G of S, for its coefficients are ulxtegers
and its detétymnant +1. T traosforms la,b,c] into the equivaleat
form [Aflé':cfj. _

Thevtransformation U,r X = X, + qYs, ¥ = Yy, where ¢ IS A%
’hﬁ?gﬁr; is also in the lagtice group of Se, and [7, transforms [4.B,C']
ini6 the equivalent form [A,B*C] where BY = 2q4 + B Thﬂ%" by
a suitable choice of ¢ we can make B* a least absolute value residue
of B mod 24; i.e., —A <B* £ 4. o

I B* < 0, then the transformation V: X = Xz_, Y, = — Y5, 1510
the latiice group of Sy, and V transforms [A.B +,( into [A.B ,C] where
B= _B* TfB* = 0, wesetB = B™ Hence in both cases We have
0B =< A -

By the transitive property in F.2it follows that [.b.c] is eqmvaﬁent
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to [4,B,C]. By F.4 it follows that these forms have the same dis-
criminant. By the hypothesis B? — 4AC = § — dae < 0. Then
gince A > 0, it follows that € > 0. Farthermore by F.1, 4 is the
Jeast positive integer represented by [a.b.c] and by [A.B,C]; bence
A=ZC

This completes the proof of the thcorem. A form with the prop-
erties (27.4) will be called a reduced form.

For example, if given f = [4,—27,48], we check that b — 46 =
—39, so the form is positive definite and of negative discriminant.
It is clear that A < 4. From (27.3) we writc N\

164 = (82 — 2Ty + 3092 < 64\ >

which requires ¥y = 0 or ¥ = 1, The first case requiites « = 0 and

A=0; 0or 2=1 and A =4 The second_gasé requires both

(8z — 27)* = 25 and (8z — 27)? = 9 mod 16-so that only two solu-

tions are found: either 2 =3 and A = 320r ¢ =4 and A =4

Thus the correct value of A is 3 with'\’éhe proper representation

f(3,1) = 3. The transformation THix= 3X +2Y, y =X + Y,

takes [4,—27,48] into [3,—9,10]. Simee —9 = 6(—2) + 3, we may"
weln X=X, 4+2Y,Y = Y;,“bd transform [3,—9,10] into [3,3.4]

which is a reduced form. ThHevnext theorem guarantces that we
cammot, by some other sequence of transformations, arrive at any

other reduced form. C

A
F.7: In each clds3\of equivalent positive definite forms of nega

tive discriminant ghere is one and only one reduced form.

Proof: ByE<6 there is at least one reduced form in every class of
equivalent, fositive definite forms of negative discriminant. Let us
suppose\gh:it [a,b,e] and [A.B,C] are two equivalent reduced forms,
each Satisfying the conditions (27.4) so 0 < b e, 0<0 =g H
0SB'<A4, 0<A=<C Let us suppose that these forms are

{eytivalent under a transformation T' such that the relations (27.1)
hold.

It is no restriction to assume a = A. From {@ * ¢} £ 0 it
follows that a 4 ¢ = 2{aic;]. From 0 = b < a, whether &€ z ¢
or aie; < 0, we have baye, = —a|aei|f. Then since ¢ = &, W€ may
use (27.1) to see that

A = aa® + baer + e’ Z 2a| e — el = alae].
Hencea 2 A Z aloe), 501 2 |y |.

If |aei]== 0, and ay = 0, then ¢, < 0, for ady — ey = T 15 then
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¢= A =ce?Z ¢z a shows A =g¢q A simiar argument holds
when |aiei]= 0 and ¢ = 0. 1f | @] = 1, the concluding line.of the
last paragraph shows & 2 A = a, 5o that A = . Thus in every case
we have A = . =

Te=a=A=0G, WemayuseFAandb?—4ac=Bﬂ—4ACto
conclude that b = B2 Since b and B are non-negative, it follows that
b = B, hence in this case the reduced forms are identical.

In the remaining case it is no restriction to consider ¢ > @, Tather
than C > A, inasmuch as we have already shown @ = A. Then the
nequality established above is more restrictive and instead (of,
A 2 a|me|, we may say A > alme}= Alaeil, so Jae| = 00

T ay = 0, then ¢; 7 0, for ady — biey = +1; furthermbre,lbiq{lé 1,
welf=1 Thena=A=ceif=0641 contradiction of‘t,.hé assump-
tion ¢ > @, so this case cannot arise. o\

M gy >0, then ¢ = 0, and as above aydy = $Nor ady = —1.
From (27.1) we may write . ) N

B = 2aab, -+ blawds + bics) + 2001({1.%}9;1&13?1 + basds.
If ad, = 1, then B — b = Zaa:b; is a ‘mhltiple of 2a3 but with
0=b=a, 0=EBZA=a, we haye':—'aéB—béﬁ- Hence it
follows that a4y = 0; since & 5 Opawe bave b = 0. Either & =1,
h=1; 0r gy = —1d = —1, “Jn these cases the corresponding
transformations T = I or T{= —J are such that B = band C =¢.
If aydy = —1, then Behb = 2aaibs. Since 0 £ B 4-b = 2a, We
have two cases to consi \r B +b=0,thenB=b= 0, and also
aby =0 so that. bp=0; then either a:= 1,d, =—1; or &4 = -1,
d = 1: in either{Case the transformation T thus determined is such
~that € = ¢. ~I€'B + b = 2a, then B = b = a, and abs = 1; then
either g =\\‘Lb; =1d = —l;orm=—Lh= ~1,d = 1; in either.
case the ',t:rans['ormation T thus determined is quch that C = @b’ -+
bb%@\li‘g’édlz =qg—b-F+c=C¢0
{Thus in every case reduced and equivalent forms hav
to be identical, which completes the proof of ¥.7. ;

The final notc of clarification is contained in the following theorsm,
which carrics the warning that there may be more than one reduced
form of a given discriminant but tempers the warning with words of
finiteness.

e heen shown

F.8: There are only a finjte number of reduced forms with the

same discriminant.
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Proof: TFrom the condition (27.4) we have B* = A? £ AC < 44C
or B2 — 4AC < 0, so a reduced form is automatically positive defi-
pite. Let us set K = 4AC — B* > 0. Then 442 £ 1AC = B2 —
(B2 — 4AC) = A + K, so that 3A* £ K. Henee if K is lixed, there
are only a finite number of choices of 4. The conditions 0 £ B = 4
and B? = — K mod 44 show that there are only a linite number of
B’s to go with a choice of 4. As soon as A .and B ave sclected, € i
already fixed by 44AC = B + K. In shorl, there are only a fifite
number of reduced forms of a given discriminant, — K. O\

An immediate corollary, of course, is that there are only, a finite
number of equivalence classes of positive definite forms, of’a given
negalive discriminant. For by F.7 each such class c@r;:taTns one and
just one reduced form. Since by F.8 there are oyl & finite number
of these reduced forms, there are just the samehamber of classes.

For example, if K = 6, then 342 < 6, shows A = 1; but since
neither B = Gor B = 1 solves B2 = -6 D;LQ& , there arc no reduced
forms, and no positive definite forms, i discriminant —6. But if
K =1, then 342 <7, shows A =1, and B = 1 (but not B = 0)
solves B2 = -7 mod 4; hence thérs is one, and just one, class of
positive definite forms of discriinfriant —7, and this class is repre-
sented by its only reduced form [1,1,2].

With these ideas as batkground Hermite gave a simple proof of
the theorem of 27.1, w\hiéh we restate ag follows:

F.9: Every prithe of the form 4K + 1 can be represented as the
sum of two squakcs.

Proof:  Siee —1 is a quadratic residue of the prime p = 4K + 1
there aljé\infegers s and { such that s> + 1 = Ip. Hence the fOIl'ﬂ
[i,23,p}fv}ith p >0, t >0, and discriminant (2s)* — 4fp = —4
pogitive definite. When K = 4, we have 34% < 4, so A = 1; thet

dioi Bt = —4 mod 4, only the solution B = 0 satisfics 0 < B < 43
and for this solution ¢ = 1. Thus there is one and only one reduced
form of discriminant —4 and it is [1,0,1]. By F.7 it follows -th_at
[£2s,p] and [1,0,1] are equivalent, for they have the same dis-
criminant and there is only the one reduced form with this discriot”
nant. By ¥.1 these equivalent forms represent ihe same integers.
But it is clear that F(X,Y) = [1,2¢,p] represents p, inasmuch a8
F(0,1) = p. Hence it follows that [1,0,1] represents p. However,
fley) = [L,0,1] = 2% 4+ 42 is the familiar sum of iwo squarcs, now
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written as a binary quadratic form. Hence p may be written as the
sum of two squares.

The Literalure about quadratic {orms and universal functions is
extensive. But among modern writers, {ew, except Dickson, inctude
the topic because Dickson and his students have written so exien-
sively on the subject; 80 it is to this author’s books we refer the
student who may wish to pursue the subjeet in greater detail.*

$A recenl, book: B. W. Joncs, The Arithmelic Theory of Quadratic Forms, Carugh

Monograph No. 10, New York, Wiley, 1950, . O\
e

) . _ A\ N

EXERCISES Lo

Y mx. 974, Prove that f(z,y) = * +¥* is equivelent ¥ F Q(;Y) = 37X° -
90X°Y + 72X Y% — 19Y%
Ex, 27.2. (a) Using T:z = 5X +2Y,y="1X 4+ 3Y Mind the form which is
Troquivalent to f(ay) = [3:5.1]. . *:\\'
(b) Check that the equivalent forms ok part (2) do bave the same
diserimmant, OHY
wx. 97.3. Decide which of the following forms arc positive definite: (a) 12y
(b) &% 4 3xy + 2% (0) —«®+ S 12y% (d) 2+ 3ay + 3y™
Ex. 27.4. Find all the reduced forms of diseriminant —104.
EX. 97.5. Find the reduced fopm equivalent 1o
_ 374 % 194y + 255 _ )
Bx. 276 Define flz,y) t‘,{ibé strictly equivalent to F (X,Y) if and only I
fay) = F(X.Y) where T: = aX + bY, ¥ = ¢X--dY hasad — bo=
+1. Show thaitrict equivalence of functions is an equivalence Izelatmn.
Ex. 277, Show that apy given positive definite binary quadratic for
[@,h,c].of négative discriminant is strictly equivalent to & reduced form
A,B.Gwhere cither (1) 0 < A <G —A< B< A;or @ 0<A=G
02\ A, : - .
E)EQZS Show that two reduced forms of the type described in EX. 7.7
\Which are strictly equivalent are identical. ,
FX. 27.9. Show tha}; igu;ach clags of equivalent positive deﬁl_'iw forms of
zer6 discriminant there is one and only one form [A.0,0] with 0 < A.



W Maothemaiics is the science which draws
necessary conclusions, —B. PIERCE

cHAPTER 28"

PEANO'S AXIOMS

FOR THE NATURAIL(INTEGERS

>

28.1, Concerning mathematical systems. The reader has
probably become acquainted-<kith the postulational method in math-
ematics by a study of plaie geometry, but if he has had only the
traditional courses in algebra he may never have realized that al{;ebl‘as
too, is susceptible_of\guch a postulational treatment. Historically,
this is understandable, for geometry has been regarded abstractly for
over twenly cedturies, while algebra has been so viewed for gcarcely
one century’»But there was a revolution in attitude toward the
axiomatig(basis of gecometry at the beginning of the nincteenth cen-
tury; aud the revolution spread out to cause a study of the founda-
tipr{s: of all branches of mathematics.
“\In order to describe how the postulational method touches the
\tﬁeory of numbers, it will be convenient at the outset to hf}‘fe A
definition of a general mathematical system. All such definitions
have their faults, being criticized as either too general or 00 TE-
strictive, but the following one seems quite uselul. )
A mathematical system is the resultant of the application of 2
system of logic to a set of elements, relations, and operations whose,

*Chapter 28 is a supplementary chapter.

196



Section " CONCERNING MATHEMATICAL SYSTEMS ¢ 197

properties are described by a consistent set of postulates. If the -
clements, relations, and operalions are left undefined, except that they
are assumed to satisly the postulates, then the system may be de-
scribed as a pure or absiract mathematical system. If the elements,
velations, and. operations are defined in terms of previously studied
conceple and the postalales are proved to hold, then the system may
he described as an applied mathematical system or as a concrele
example. ' )

A student with some mathematical experience will sense that in the
development of a mathematical system both the abstract ard)the
concrete approaches are worth while. From a concrete exaiple one
obtains sugzestions about theorems that may hold in,the- abstract
system; but if the theorem can be proved in the abgt;‘sfct form {and
such a proof is somectimes easier, being free of distracting gpecial
dotails found i the example), then it bolds for all the concrete
examples without any further special inyegtig%ﬁons.

It may be helpful to discuss in detail sonte of the terms used in the
above definition. O : _

By the word resultant we implythat not only the elements, rela-
tious, operations, and postu]at@é,’sha]l be thought of as part of the
system, but also all propositiéns that can be derived as @ forl"{lal
logical consequence from. the postulates. One patural way in which
such & study of all propositions may be limited is suggested m a later
paragraph. We should speak of derived propositions as being ﬂﬂh"{:
rather than true,-fatemind ourselves that they can be no more “trt%e
than the orighi}aliy assumed postulates Or the previously studied
systems. /)" - )

In orflinary mathematics we use the Aristotelian system of logic
W'lth‘t.he\ following basic laws:

R Law of the jdentity: A is A, a thiog is itself. "

3{2) Law of the excluded middle: either A ornot -4, @ prﬂpﬂﬁlﬂon
1 valid or is not-valid, there being no other value that can be assignet
o it;

{3) Law of contradiction: not both A and not -4, 2 proposition 18
not both valid and not-valid. .

But in our definition we have uscd the phrase, a7 sys_,bcm of logic, -
becanse today there is study of systems of logic in which there are
more than two “truth values” to be considered for each proposition,
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and the mathematical systems developed with such systems of logic
may be considered a part of mathematics.

In any definition, to avoid circular reasoning, certain basic ideas
must be left undefined. For example, the ideas of an element, a set
of elements, and of an element belonging {v a sct of clements are of
this fundamental nature.

An important example of a relation in a mathematical syslem is an
equivalence relation, a concept which we have already describediat
length in 17.2. If we consider the properties requircd for an cqudva-
lence relation as postulates, then we already have at hand & aimple
type of mathematical system. O

A possible synonym for the word operation is thegwetd function.
For example, a rule which determines for cach elepight a of a set Sa
corresponding element b = f(a) of Sis an exam{:ﬂ%'df a unary opera-
tion. A rule which determines for each ordercd pair of elements
a,b of S a corresponding element ¢ = f(a,b’}\\of 8§ is an example of a
binary operation. In similar mamenswe may define functions of
three or more variables. Operatiof$)‘are usually required to be
closed and well defined: thus a hindry operation f(a.b) is said to be
closed if f(a,b) is in.S for every.and b in S and is said to be well de-
fined (with respect to a specified equivalence relation) if a = @’ and
b=1b imply fla,b) = fl@%) for all e,b in S. Similar definitions
apply when unary, ter’r;ar}y, and other operations are being considered.
Some of these idcasitiave already been well illustrated in 17.3.

The mathematisal systems studied in modern algebra may be
characterizeds at least roughly, as those in which are present operd-
tions resembling some of the familiar operations of addition, multi-
plicationSubtraction, and division.

Thef')s%"o{' postulates in a mathematical system is, of course, man-
made; sometimes suggested by external situations, sometimes pure

=N - . . - . 3
ipyention; but in such a selection complele arbitrariness 1¥ not

allowed, for the sct of postulates is always required to be congsistent.
This term means that in the propositions derived from the POStul?teS
there must never appear a violation of the law of contradiction, 1.6
it must never happen that a proposition is both valid and not-}rahd'
The only known test for the consistency of a set of postulates 1 the
exhibition of at least one example satisfying all the postilates.

It is desirable, although not absolately necessary, that a get O
postulates be such that no postulale can be derived as a theorem {rom
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the other postulates; a set of postulatcs with this property is said to
independent. The Llest for independence of a set of postulates is the
exhibition of as many examples as therc are postulates, one for each
postulate, wilh the property that the example does not satisfy that
particular postulate bat does satisly all the other postulates, hence the
postulate in question could not possibly be derived as a theorer [rom
the other postulates.

To describe one further property of a set of postulates it ig first »
necessary to explain just when two examples satislying a sct of
postulates shall be considered distinct. It is reasonably clear tha’s.ii
the elements auby,. .. of example S; in which there is, say, 2 bihary
operation fias,hy), may be paired off in a “one-fo-one” mgmndr (see
helow) with the clements asbs, . . . of a second cxample’Sy'in which
there is a corresponding operation fo{as,bz), and theypairing off is of
such a nature Lhat whenever @, and az, b and haace corresponding
clements, it then follows that fi(e,bs) and falad ) are corresponding
elements, then the examples S; and S5, a]thou}g‘li distinct in the sense
that their elemoents and operations haye “different names, are “ah-
stractly the same” or, o use technicaliterms (see below), they are
“isomorphic with respect to the opétations fy and fa.” )

An important goal in the study of a mathematical system is the
characterization of all the mon-isomorphic eyamples satisfying the
abstraclly defined system, ¢3Pit happens that all the possible examples
are isomorphic, Lhen tl}&\ét of postulates is described as calegorical.
This property is intérdsting, but not usually desirable, since it much
restricts the realin'ef applications of he abstractly obtained resqlts.

To make th&srdtion of isomorphism more precige let us consider
the general atter of mapping one system S inlo a secont-i S}'_Stem Ss
{which }n{ﬁ be the system S, itsell). Such & mapping 18 S}mPIY a
Cﬂrrqsgaf{ﬂence, which we indicate with a letter F, by which each
clément z; of S; is made to “correspond”’ to @ unigue element
o 3y F of Sy, 1§ every element of S, appears as the map of gome
elément of S,, then the mapping is from S onto Sp. If there 1s no
Testriction on the number of elements of St which map onte a given
clement of S,, the mapping is many-lo-one- A mapping of S onlo Sz
- Tu which only one element of S; maps onto each element of Sz is de-
sceribed as one-fo-one. .

If there js in the system S, an operation, saY filanys), and 11 the
system S, an operation on the same number of clements, say fe(&zyz) -
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then a one-to-one mapping F from S, into Sz is called an “isomorphism

of 8, and Sz with respect to the operations fi and f2” if and only if
fla,y) F = film FnF) for all z,,y, in S,

This critical property for the one-to-one mapping to qualify as an

isomorphism may be called the “operation-preserving” property.

If there is a one-to-one mapping of S; onto S, then Sy and 8, are
said to be equivaleni sets. Equivalence of sets is an equivalence
relation, and if we note the separation into mutually exclusive‘classes
produced by any equivalence relation, then we may apprediatg the
following definition due to B. Russell: the set of all sets equivalent to
a given set shall be called the cardinal number of the gek,

A subsef T of a set S is a set of elements all of which belong to S.
A proper subsel T of a set S is a subset such that there exists at least
one element of S not belonging to 7. A set Slig'said to have a finile
cardinal number if § is not equivalent to any of its proper subsets;
but if S is equivalent to a proper subsetofitself, then S is said to have
an infinile cardinal number. Y
28.2. Peano’s axioms, Aln(mg the studies of mathematical sys-
tems, one of the most vital ig\an abstract description of the natural
integers, i.e., the positive\integers or counting numbers or finite
cardinal numbers, for ‘t}iey are building blocks for almost all other
more complicated thematical systems. The following description,
due essentially t0*G. Peano (1858-1932), is only one of several pos-
sibilities, but.if’séems like a natural one for us to pursue, at least
briefly, for, we. shall find that an essential part of Pcano’s axioms 18
the very/postulate of mathematical induction with which we have
been goneerned in previous chapters. .

’W.ér.do not, however, think that this is the place {for an exhaustive

) ~gtudy of the consequences that can be drawn from Peano’s simple
gssumptions, in fact we shall not go far enough even to show jﬂ*‘f{'
how all of the postulates come into play. Rather what we want 18
to give the reader an introduction to the subject, enough of the
philosophy of assumptions, definitions, and proofs that he can per-
haps carry on for himself—and at least appreciate the remarksf o
the first lesson to the effect that *“. . . these [commutative, associative,
distributive, and cancellation] laws may be proved as theorems 00
the basis of other still simpler postulates.”

According to Peanc, a system of natural integers is a set S of
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dlements a,b,..., called ‘“natural integers” or briefly “integers,”
with an equals relation written @ = b or a # b (to be read “e equals
b or “u is not equal to b,” respectively), and a “geruels’ operation,
indicated by a’ and read “‘a’ is the sequel of a” or “g is the aniecedent
of ', subject to the following postulates:

§.1: There cxists an integer called “one,” written 1.

§.2: Every integer ¢ has a unique sequel a.

S.3: The integer 1 has no antecedent.

S.4;: Ifa’ = b, thena =b. .
S.5: If M is a set of integers such that: R, \))
(I) M contains 1; W\

~

(II) if M contains a, then M contains &’; N
then M contains all the integers of S. ¢*0

By way of preliminary comment on the various"ﬁg\doms we note

that S.1 guaraniees that the set S is not empty; S.2 implies that if

g=h, then & = b'; 8.3 implies a’ % 1; S.4says that antecedents

are unique; and $.5 is one form of the)p inciple of mathematical
induction. O

In the proofs of the following theorems we will adopt the babit of

- writing under each equality sign théji‘lame of the definition, postuis'nte,

* hypothesis, or previously proved theorem W ich justifies the equalify.

28.3. The operation of gddition. Ty terms of Peano’s axioms -
it is possible to define Tor the integers of §an ordered binary opera-

tion, called additién> and written a + b, having many t."amﬂlar

propertics to justify this terminology. The definition of addilion may

be made as fgé]})ﬁs: ’

D.I: .ﬁ\e:"tieﬁne 1+ b = b for every bin S.
D'uj='?or every a in S for which

\'\, Al a—-}—l:a’,and )
Adl: g 4 = (@ + b) forevery bin 3,
we define o’ + b = (a + b)’ for every binS.

Theorem: Thé operation of addition is closed and well defined.

Proof: Before begiuning the proof we should mention that ﬁti:
abf)ve definition is due to Grandjot, Landau, a¥1d Kalmar w]]::iz.t'
Pointed out in Landau’s Foundation of Analysis that the defimtion

of Peano which employed only A.I and AT is actually incomplete,



202 * PEANQ'S AXIOMS Chapler 28

defined only for a fixed a, not for all . Attempts to prove well-

definedness, for example, using AT and A.TE only, are unsaccessful.
(A) Let M be the set of all integers a for which the operations of

addition defined by D.T and D.IT has properties A.1 and A.IL '
(I) M contains 1: for

14+1=1
n.a
which is A.I when @ = 1; and then ~
14+ b’ = (b’)’ = (1 + By A
which is A.II when ¢ = 1. O

(1) If by hypothesis F: M contains ¢, then M contams a': for
d +1=1(a+ 1)’ = (a’)’
ji1
which is A.I for a’; and then
a+U—m+w%ﬂm+Wﬂ @ by

which is ALIT for o’. N\ )
By (I), (31), and 8.5 it follows_ ’shat I\vf contains all integers. DBut
with A.I and A.YI holding forearery g, it follows that a b is a
uniquely defimed integer of § ~fo,r every @ and b in S, so the operation
of addition is closed. 2z
{B) To show that d(’htlon is well defined we suppose G: b = =B

and let M be that seﬁ\ofa]lmtegersafor which ¢ + b = a 1+ B.
(I)Mcontams
PN\ 14+b=b = B =1-+B.
\ DI €,82 DI

N
{In QM ‘contains a, so that H: ¢ -+ & = a + B, then M contains
a’, fcnrs

R

A @ +b=(@+1) = (@ +B) =a +B
\ BY N, (II}, and S.5 it fo]lows that M contains all integers.
Similarly (except that we use A.I and A.II instead of D- 1 ﬁﬂ‘;
D.I1, respectively), we may show thatif ¢ = A, thena + h=A+
for every b in 8.

When ¢ = A and b = B, we combine the above results and have
a+b=at+B=A+EB
50 that addition is well defined.
Attention to this last property is by no means trmal for in fhe_
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next proof we find that we often need to make repiacements, such as
a+1byd.
T.1: The associafive law of addition: (@ +b) +¢ =a + ( + ).
Proof: Let a,b be fixed and let M be the set of all integers ¢ {or

which T.1 holds.
() M contains 1, for

(@ + 1) t1=(a+b =a+b=a+0+D.
Al ATl Al

(ITy If M contains ¢, go that H: a+b)+e=a+®+ c),.t]iesi}
M contains ¢, for O '

(1+8) ¢ = (@ +B) o) = (a+ G+ =a+(ke) SgF B+
AdI H, 8.2 AL ALK

By (1}, (I1), and S.5, M contains all integers, hendé:}f.l is always
valid, O

AN
T.2: The commulalive law for additionia\xd-"b =b+a

Proof: Let b be fixed and let M bq i;l‘le’set of all integers a for
which T,2 holds. N\ _
{I) M contains 1. To prove ﬂ;@s: we use apother induction arga-
mont, letting N be the set of all Thiegers b for which 1+ 6="5-+1
Clearly, N contains 1, for 1L&»1 = 1 + 1. Suppose that IV contains
bsothat IN: 1 4 b = \FI Then N conlains ¥, for
Vb = () = b +1) =0+ +1=0+1
AL \ I, 5.2 Al Al
Hence by S.S,.&I.‘c'ontains all integers. Hence M contains 1.
(II) Tf M @oittains a, so that H:a + b = b + a, then M contains
@, for NV \
¢ Fb =@+ +b=a+ {1+ =a-{r(b+1)1f1
&\ AL T.% . Iy -

~ (@ + b) —i—l:l(a+b)'=—-l(b-|—a)’;‘-—;lb+a’.

¥

]

]135’ (), (IT), and S.5, M contains all integers and T.2 is always
valid.

T.g: The cancellation law for addition: if @ +¢= b +e, then
@ =},

Proof: YLet M be the set of all integers ¢ for which T.3 holds.
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(I) M contains 1, for if a +1 =151, then by A we have
@ = b, whence by S.4 it follows that @ = b.

(II) If M contains ¢, so thatH:a +¢ = b -}- ¢ implies @ = b, then
M contains ¢, because if @ 4 ¢’ = & + ¢/, then by A.II we have
(@ +¢) = (b +¢), and by 8.4 we have a +-¢ = b 4 ¢, whence by
H,a=b .

By (1), (ID), and 8.5, M contains all integers, hence T.3 is always
valid. N\

Believing that the proofs of T.1, T.2, T.3 are a sufficient ir}dication
of the methods of developing the propertics of the natqrg’l"nﬁegers
from Peano’s axioms, we shall merely indicate, without, preof, but in
proper sequence, a series of theorems, definitions, gﬁa"lemmas that
culminate in some comforiing facts about the intégers.

T.4: For all integers a,b, in S, ¢ # a + B
T.5: If ¢ 5 1, there exists just one i{t&ér u such that = o'

T.6: The fricholomy law: for ever’yt ]_:;air of integers a,b in S, 028
and only one of the following .ggégs"must hold:

NDaetu=b; a=b,;f;'(3) a=5b-+u

Definition: We write g ’<:5, read “g is less than b,” if and only
if there exists an integerisuch that ¢ + v = b: we writea £ b, read
“g is less than or %@A %o b,” if either @ < bora =5

L1: 1< qfohoevery ainS.
L2: HAXDb, thena+15b

4N ] . . . .
DeﬁN{twn: If in a given set /N of integers there 15 an nteger m
suc]:gt}}at m £ z for all integers z in IV, then m is called 2 “gipallest
integer in N.”

N\ ‘ T.7: In every non-empty set of integers, therc is a gmatlest
mteger.
The prool of T.7 is a little more subtle than proofs for the other
theorems, perhaps because the conclusion of the theorem seems 50
obvious. How really fundamental this particular theoremt T.7 is, 18

shown by the fact that if T.7 is assumed, then S.5 may be Pm"_ed
as a theorem.

I'.8: Peano’s axioms are categorical.
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In 28.1 we have already explained the significance of the term
caterorical. In this casc it means that any two systems S and §
satisfying Peano’s axioms may be shown to be isomorphic, meaning
that a one-lo-one mapping can be established between the iwo sys-
tems, say that @ in S corresponds to @ in S and o to &/, such that this .
corregpondence IS “sequels-preserving,” so that if &% denotes the
sequels operation in S, then @’ = @* for every a in S. _

Since all the other usual operations on integers may be defined in
terms of the sequels operation, it follows that 'T.8 is of considerable
logical importance in that although several different schemes of reps
resenting the integers may be proposed, they arc absiractly the SANE!
There is no theorem provable with one scheme of rcpresentation that
i not true under all the other schemes. For example, of-the various
ropresentations suggested in Chapter 4, some one;.,lfn,&y be more
familiar or more convenient for a particular prod it T.8 assures
us that the results, correctly translated, are trl}e\‘ill‘every representa-
tion, L&

Ordinarily 1t is rather restricted and‘iminteresting to study a
mathematical system that is categorical. But when we consider
how the natural integers are buil ng biocks for so many other sys-
tems, it is comforting to know_that this basic system is essentially
ungue. . o~

Perhaps the reader hasmbted that no attempt has been made. to
prove that Peano’s axmkms sre consistent—this is another reflection
of the basic naturecdf the system of integers. To avoid circular
reasoning there mags surely bhe some basic sys
cannot he demonstrated and the integers seem
this basic Qe” '

O

tem whose consistency
a natural choice for

28.4, .\'The operation of multiplication. Just as in e'lemen.tary
arfttimetic, where multiplication is introduced as a cor'wement short-
b3nd for certain types of addition problems, so here in the abstract
development, it proves convenient to define the operation of fnultl-
plication in terms of the previously studied addition. We wish ©0
define for the integers of S an ordered binary operation, called mult-
plication, written gb. Following Landau, rather than Peano, wé pro-
deed as follows:

RI: Wo define 1b = b, for every bin S.
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R.II: For every a in S for which
M.I: ¢l = ¢, and '

M.II: a¥ = ab +a, for every bin S,
we define ’b = ab + b, for every b in S.

The following theorems will be e[t as excreises, it being understood
that they had best be considered in sequence.

Theorem: The operation of multiplication s closed and.well,
defined. \

AN

T.9: The distributive law: (@ -+ b)e = ac -+ be. O
T.10: The commutative law for multiplication: ah"%"f}a.
T.11l: The associelive law for multiplications: (ﬂb)? = afbe).

T.12: The cancellation law for multipligt:ion: il ae = be, then
a=h ¢*

In terms of the sequcls operation aml:?he operation of multipli-
cation it is possible (see Landau) to ‘define for the integers of the
system S a binary operation, ca[lqd:exponentiation, written a’, that
is closed and well defined and has'the following properties:

El: at=a; EIl;~g = da

The following theoreixﬁs\then represcnt exercises in Lhe usc of 85
and the previous tb&ms and definitions.

T.13: alas, &g,
Ta4: (@*= a.

Pl
Tl'\\ {ab}® = a°be.

(3% EXERCISES

4

EX. 28.1. Show that for a fixed integer @ there is only one way of defurmg
an operation of addition that will possess propertics Al and AJL

£x. 28.2. ' Prove that the operation of multiplication defincd in 284
closed and well defined.

X, 28.2. Prove F.9.

EX. 28.4. Prove T.10.

Ex. 28.5. Prove T.1L.

ExX. 28.6. Prove T.12.
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ix. 28.7. Defnel’ = 2, 9 = 3,8’ = 4, and show by the use of the theorems
that (2)(2) = 4

. 28.8 Supposing that positive inlegers written with the base 10 form a
system S satisfying Peano’s axioms, prove that all positive multiples of
5 form a system S satisfying Peano’s axioms. Find the isomorphism
between S and S that illustrates T.8.

FY. 28.9. Prove F.13.

EX. 28.10. Prove T.14.

rx. 28.41. Prove T.15. ,

gx. 26.12. Prove that there exist no integers g and £, guch that g < 2 < @, ¢

o K2
.'\“\




W Sirictly speaking, the theory of numbers
has nothing o do with negative, or fractional,
or irrational quantifics, as such.

—G. B. MATHEWS

CHAPTER 29°

INTEGERS—POSITIVE,

NEGATIVE, AND ZERO™,
AV

29.1. Integers as pairs of natuygl'ihtegers. We wish to devote -
one more lesson to the foundatigns of our gubject and to indicate
one way in which the completg@ystem of integers, positive, negative,
and zero, which we indicated"in the first lesson to be the elements of
our study, may be developed in a logical manner from the natural
integers as described, 8y, by Peano’s axioms. Although all theore®s
about integers cap be written in terms of the natural integers alone
there is a certainytediousness and vexation in doing so. Henece we are
going to em 175}3’ a device that is frequently useful in the study' of
algebraic syétems, namely, the embedding of the system in queSFw}%
(in the.gense of an isomorphism) within a larger system wherein it 18
hoped that the theorems in question may be more easily formulated

M5[1'11:1’,'m-:)re easily proved valid.

) In our case most of the difficulties, if we do not use this embedding
idea, will be found to arise from the fact that in the syslem of natussd
integers the equation @ = b + z has no solution when a = b an
when « < b as is seen by relerence to T.4 in 28.3. Hence We'ﬂfay
set ourselves the problem of inventing a number system, retainind
as many {eatures as possible of the system of patural integers and,

®Chapter 29 is a supplementary chapter.
208
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in particular, containing a subset isomorphic to the natural integers,
and within which the lype equation “a = b + & is always solvable.
If the elements of the new system are called “integers,” we must
hencelorth be ralher strict in calling the elements previously dis-
cussed by their full title “natural integers.”
Let us define the system of infegers to be the set N of aif ordered
pairs (a,b) of natural integers a,b subject to the foliowing definitions:
E: equality: (a,b) = (¢,d) if and only fat+d=b+e
A: addition: (a,b) + (c,d) = (a + &b+ d);
M: multiplication: (a,b)(e.d) = (ac + bd,ad 4 be); O\
0: ordering: (a,b) < (c.d) if and only ifa+d<b+ter
Note that cach of these concepts is defined entirely in ,tgr‘rhs of
elements, relations and operations in the system 8 of naturahintegers;
hence all Lhe following thcorems may be proved by Leferring back
to the previously assumed postulates or the previously established

theorems aboul natural integers. NV .
In the proofs of the next theorems we il use the notation
“ %, 4o indicate that the fustvsiatement implies the

second statement, and we will write under the arrow the name of the
defmilion, postulate or theorem 'Wijich justifies the imph'cati?n.
Note that if p — ¢ and g —, thén'p =7 Similarly, the notation
“...7e— < 7 yill indicatgthat the first statement is valid if and
only if the second statemeptis valid.

N.I: The equality Eof integers of IV is an equivalence relation.

Proof: R.1: E.i& 8cterminative ty T.6. .

R2: B is roflsive, for a + b = b+ a = (@) = (@b)-

.\ T.2 E .

R.3: EJ "g\;S(mmetﬁc, for
ab) = @ -—>a+d=b+c—+c—!—b=a+d";(c_'d)=(“’b)'
., E

T.2, R.3in §

R.4%"E is transitive, for

\}f.].: (a,h) = (¢,d) —sag+d=b+t¢
E
:['1-2: (C,d) _— (e,f)__—)c +f= d'l"e;
E
dt@+h=@d+a+f=@+d+IT
T T.2 M

Nl .

bbb rdre=GtdFez@TDTE
T a2 T .

1

(h+o)+if

—dt (b4 atf=bteseh=ED
.1 .3 . E
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N.2: The addition A of integers of N is ({) closed, (2) well
defined, (3) commutative, and (4) associative.

Proof: (1) by definition A and by A.I and A.IT of 28.3, the sum '
of two integers is an integer. '
@) I{H: (@b) = (AB)2e+B = b+ A, (6d) = (C.D)—~e+D
E
= d 4+ C; then
a+c+B+D—-b+d+A+C-—>(a+cb+d) ~

H,T.1,T.2
(A+CB+D)—*(ab)+(c,d) (ABJ+(CD)\\
3) (a,b)+(c,d) (a+c,b+d) (c+ad+b)—-@:‘d)+(a,b)
@ (@b + 6D} + () = (a+cb+d)+(e,g
~i(a+c)+e,(b+d)+f} {a+(c+e)b+(d+f)i

= (@) + (e +ed+1) = (ab)@(ed)ﬂem

N.3: The multiplication M of mtegers of N is (1) closed, (2) well
defined, (3) commutative, (4) asaoclatwe, and (5) distributive with
respect to addition. R

Proof: (1) by definition M and by A.I, AII, MY, and M.IL of
28.3 and 28.4, the product of two integers is an integer.
(@) ITH: (ah) = B)—+a+B —b+A,ld = (CD)-erD

= d 4 C, then{ ~
(aD—}-bC-{v\bD-{—aC) + {ac + bd + AD 4+ BC)
® ) = a4 D) +bd+C) + b+ AD+ @+BL

§ T.1, T.2, T.9, T.10
~a(d+C)+b(c +D)+(@+B)D+ b+ A
~O = {(aD +bG+bD+aC)+(ad+bc+AG+BD)
; T.1, T.2, T.9, T.10
—>ac+bd+AD+BC_ad+bc+AC+BD
—s (ac + bd,ad + be) = (AG+BDAD+BC)‘
E
— (a,b)(c,d) = (A,BY(C,D)-
M

) (ab)e,d) = {ac + bd,ad -+ be)

:I:l

= {ca + db.ch, da) (‘3 d)(a,b)

T.2, Tlﬁ E
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@& {ab)led}ef) = (ac + bd,ad + be)(e.f)
= (ace + bde + adf + bef,acf -+ bdf + ade 4 bee)

M,T.9, T-il, T.LL E

= (ace + adf + bef + bde,acf -+ ade + bee + bef)

T.1,T.2, E

= (a,b)(ce + dfief + de) = (@b {e.d) (e

E, T.1,T.11, 5.9, M M
) (ab){(c,d) + (&)} = (a,b)(c +ed+1)

= (ac + ae + bd + bf.ad + ef -+ be -+ be) Ko\

M, T.9, E ‘ A\
=(ac—i—bd+ae+bf,ad—l—bc+af+be) >

T.1,T.2, E N
= {ac + bd.ad + be) + (ae + bfaf + be) ¢

T AL E ~\

= (a,b)(e,dy + {(a,b}e.f).
M \,/

K22 Y
N.4: The ordering O of integers of . safishics a trichotomy law.

Progf: By T.6 of 28.3, one and oqlir: bne of the cases ¢ +d <
btca4d=b-te b+tc<a-edimusthold, hence by O and E
one and only one of the following:ééées must hold:

D) (@h) < (e,d); (@ (@h)=Tled; @ ed < @b

29.2. Integers c]assiffé:d\ as positive, negative, and zero.
From T.6 one and 0nl§\\)ne of the cases @ < b, @ = b, b < a must
bold, hence there afe’three and only three types of integers (a,b)-
This classificationray be made even more explicit as follows:

P\ _
Lemm%”‘(m,y) = (a + k,a) if and onlyilz =y + ks
N (z,y) = {a.a) if and only if 2 = ¥;
.\': N (z,y) = (a,a + k) if and onlyify = ¢+ k.
(o) = (e bk pebamyHathop Ty e
— _— i = ¥,
(x,y) = (a,a) > ta=y+ @ e 3
= =x+k
@y) = (@atk) o +atk=y +T?'1{,_'}_.Z3;.3
In the light of this lemma the following more convenient nofations
lil:lay be introduced and the new definitions may be des'cr'lbed as
well defined,” because, as the lemma shows, the definitions are

independent, of the natural integer @ which appears in them.
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Definitions: (e + k.a) = k, called the “positive integer, plus B;

(a,a) = 0, called the “zero integer’;
(a.e + k) = —k called the “‘negative integer, minus
kY

N.5: The system of matural integers is isomorphic to the sub-
system of the integers consisting of the positive integers, the cor-
respondence between the two systems being preserved under bth,
addition and multiplication. N

Proof: The correspondence F(k) = (a + ka), F(m) = (b m.b)
is a one-to-one mapping of the natural integers ontowthe positive
integers. Since K7 \

F(k)+F(m) = (a-+ka) +(b+mb)=(a +b+k+m‘,:1’—|— by =F(k-1+m),
it follows that the correspondence is an isomerphism with respect to
the operations of addition in the two systers. Bince
FRFm) = (@ + k)b +mb) = O\ 4

(ab - am + kb 4 ab + nfzmtab 4 am + kb +ab) = F(km).
it follows that the correspondenca is also an isomorphism with respect
to the operations of multiplicAtion in the two systems.

Hence we have succeeded in constructing a system of numbers
with a subsystem ison;grﬁhic to the natura) integers. That the new
gystem is larger théq\this subsystem is shown by the presence of
zero and negative integers and in another way by the {act that th.e
ype equation»fa/= b + «” is now always solvable, although thas
equation in\kas a different appearance than in 5 with new meanings
for the e{éflients, the equals relation, and the operation of addition,
: nam’eljf:\

_(N6: The equation H: (ab) = (ed) + (r.y) hes the unique
 sblution (z,y) = (a + db + ¢).
Proof: (ab) =(+ad+y)e—at+d+y= bt+ect=
H, A& E, 1.1

abbdomytatdoe— oy = (@tdbTo
T.1, E

T.1, T.2
We shall leave as exercises the proofs of the following theorems:

N.7: Properties of the zero integer: (f) 0+ (a,b) = (@.b)3.

@ 0@k = 0; 3) (@d) 4 () = 0 (&) I (@b) + () = (@b
+ (B,f), then (Csd) = (e,.ﬂ. )
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N.8: The resiricled cancellation law for multiplication in N: IT
(@h)(e.d) = (a.b) (e.f) and if (a,b) # 0, then (e,d) = (e.f).

N.9: Properties of negative integers: _
() (=Bm = —km=k(-m); (2 (~k)(—m) = km.

Theorem N.9 seems worthy of some philosophical remark, for too

often because of the limited background of his first teachers the ~

student, will be left with the impression that the rules of sigDs,
embodied in N.9, have some absolute or preordained source. (B
here the rules of signs are scen to be merely mcidental théprems, -
the offshoots of a more deepseated search for a systemwith com-
mulative and associative operations as in N.2 and N.&and within
which N6 will be valid. O

If we definc a mew operation, called subwa‘ction, as follows:
ah) — (c.d) = (a,b) + (dc), then Wwe may, fyeve a8 exercises the
following thearems: x\

NN

N.10: Properties of subtraction: ,,';."

D keomeht (cm MO () = m
@) k- tSm) =k+m.

EXERCISES)"
X\

EX, 29.4. Prove N7 D

BX. 29.2: Prove Ni&.

X, 29.3. ProveN.9.

EX. 29.4. ‘Proye N.10. : <b

Ex. 29.5.{Wq and b are any posilive integers, show —& < b .

EX. 298’ Tt his a posiii?:e integer, ghow that (s,t)b < (U»,ﬂ)b if and only if

...\3(;?}0 < {uw). .

®x)29.7. If —1 < (s,f) < 1, show that s = L

EX, .‘(29.8. If b is a positive integer and — b<
Hint: Use £x, 29.6, BX. 29.7.) . '

¥X. 299, Show that a < b if and only if a-tz< bt o for all x (a,
and » in V). : s s i

%5, 9940, Show that the quotient and remainder in the dVIECH algorith”
are wnique by assuming the possibility of two l—epres.euhatmn&f :’
o e 0 7 < b, 0 ry < b and proving LT
and g = q,. (Hint: Use Bx. 2.9, EX. 29.8, and N.8.

(s,5) b < b, show that s=1



B The erisience of colewloling machines
praves thal compulalion is nol concerned
with the significance of numbers, bul only
with the formal lmes of eperalion; for il is
only fhese which the machine can be con-
siructed lo obey, having no perception of the

meaning of the numbers. —TF. KLEIN
-
CHAPTER 30 A
O\
7o\
RATIONAL NUMBERS RS
R
D"
‘\ Nt

30.1. Logical foundation for gjé‘ti(u)nal numbers. In the pre-
ceding chapters on those few oggsisiéns when we have used fractions,
we have assumed that the rides for operating with these numbers
were well known to our teaders. However, it is perhaps within the
province of this text to~discuss fractions more critically ant_l to ap-
proach the subject ns\‘the spirit of Chapters 28 and 29, defining each
new symbol and gach new operation in terms of previously kI}OWTJ
numbers and gperations, We shall use the technical term “rational
number” instead of the colloquial word “fraction,” but as & symbol
we shaiQf:ﬁb;'ﬂoy the familiar a/b.

Dqﬁ}:}ions: (1) A ralional number, indicated a/b, i3 an ordered
"Qaiﬁjof' integers ¢ and b, with b > 0 (however, see EX. 301y, th_e fltISt

\iﬁﬁéger a is called the numerafor; and second integer b, the denomund or.

(2) Equality: a/b = ¢/d if and only if ad = be.

{3) Multiplication: {a/b)(¢/d) = ac/bd.

(4) Addition: a/b + ¢/d = (ad + be)/bd.

(5) Order: a/b < ¢/d if and only if ad < be.

Note well how each definition employs only concepts which were

®Chapter 30 is a supplementary chapter.
214
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developed earlier. This fact is brought out clearly in the theorems
which follow. '

U.d: Equality of rational numbers is an equivalence relation.

Proof: Since the elements of the rational numbers are integers for
which the rules of multiplication and equality are already known,
the relation defined by (2) is determinative. The xelation in (2) is
reflexive, for {rom the commutative property of multiplication ofy
integers we have ab = ba, which by (2) implies a/b = a/b. The
relation in (2) is symmetric, for a/b = ¢/d implies ad = be, which in
" turn implies, by the commutative property of maltiplication of
integers and by the symmetric property of equality of ingégers, that
¢b = da, whence by (2) we have ¢/d = a/b. The relation in (2 s
iransitive, for if a/b = ¢/d and ¢/d = e/f, thentby " (2) we have
ad = be and ¢f = de; s0 employing the associa?i{e,property of multi-
plication of integers we may write £ >

(wf = )] = W)

since by (1) we know d > 0, We rqay'lﬁe the commutative and can-

cellation laws for multiplicatio{l:’ﬂf integers to cancel d and arrive

at af = be, which implies by (2)\that a/b = e/f.

This completes the propf{that the relation (2) for rational numbers

is an equivalence relation.’ Recalling that an equivalence relation

divides the set concernéd into mutually exclusive classes of equivalent

elements, we maydnvestigate the nature of the'sff 0133583-

Tn considering the rational number alb w1t1.1 b > 0, suppose
(@h) = D, with D > 0, then a = AD, b = BD, with (4,B) = 1 and
B>o By (2) it follows that a/b=AD/BD = A/B_becanse
(AD)R i%%D)A. Thus any given rational pumber 13 equal to one

-

in which numerator and denominator are relatively prime. On the
&Mt hand, it ¢/d = A/B where (4.B) = 1, then by (2) we have
¢B = dA; but by the fundamental Jemma (ex. 6.2), 1t ff»:'HOWS that
¢ = kA and d == kB, where k is an jnteger; MOTeOVET, since d.>_ 0
and B > 0, it follows that B> Conversely, for any posHive
integer k, we find kA/kB is defined and kA/kB = A/B. _

In summary, we find all rational numbers ) ‘dmded by the rela}—
tion (2) into classes of equal pumbers such that 1 each class there 13
one and only one rational number A/B with numerabor and denomi-

nator relatively prime; all pumbers of the form kA /KB with k>0
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are in the clags; and every number in the clags is of this form. We
say that A/B with {(A,B) = 1is a “canonical” or “reduced’’ rational
number, or that such a rational number is in “lowest terms.”

For example, —30/12, —15/6, —10/4 are all in the same class
whose canonical representative is —5/2; and every number in this
class is represented by —5k/2k with k > 0.

U.2: Multiplication of rational numbers is closed, well defined,
commutative, and associative. A\

Proof: In a/b and ¢/d we have b > 0 and d > 0 so thatdd > 9,
hence ac/bd, with an integer in the numerator position ard A positive
integer in the denominator, is a rational number, sg~the operation
defined by (3) is closed. I a/b= A/B and cﬁ\diz C/D, so that
aB = bA and ¢D = dC, then acBD = bdAC .which shows ac/bd =
AC/BD and proves the operation defined by {(Shto be well defined with
(a/b)(c/d) = (A/B)(C/D). Bince in integérs we have achd = bdca, 1t
follows from (2) that gc/bd = ca/db; then'by (3) and U.1 we see that
(@/b)(¢/d) = (¢/d)(a/b) which show&)that the new multiplication
is commulative. Since in integerst{(ac)e} {b(df)} = {(Bd)f} falee) }s
it follows from (2) and (3) that} (ac’/ b (e/f) = (a/b){ce/df) and thefl
that {(a/b)(c/d)}(e/f) = (a/b){(c/d)(e/f)}, hence the mew multi-
plication defined by (3) ie"associative.

U.3: Addition {Pational numbers is closed, well defined, com-
mutative, associative, and distributive with respect to multiplicatiol.

Proof: I }a\/b and ¢/d we have b > 0 and d > 0 s0 that bd > 0,
hence the-§gmbol (ad -+ be)/bd with an integer in the pumerator and
a posit‘Qie integer in the denominator is a rational number, 80 the
opexdtion defined by (4) is closed. If afb = A/B and ¢/d = C/Ds

.tfien'aB = bA and ¢D = dC and in integers we have

(ad +bo)BD = (aB)dD +bB(cD) = (bA)dD + bB(dC) = bd(AD +B0),

so that (ad + bc)/bd = (AD + BC)/BD and the operation deﬁ.ﬂed
by (4) is therefore well defined with a/b +- ¢/d = A/B + ¢/D. Since
in integers {ad + be)db = bd(ch + da) we find by (@),(%), and I:].l
that a/b 4 ¢/d = (ad -+ be)/bd = (ch + da)/bd = ¢/d + a/b, which
is 1he required commufative property. Since in integers .

{(ad + bo)f + (bd)e)b(df) = (bd)f{a(df) -+ blef + do)}
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we find by (2) and (%) and U.1 that _
(a/b + ¢/d) +e/f = a/b+ {c/d + e/l

~ which shows that the new addition is associative.
Since in integers we have

(ad + bee(vf)(dN) = (ba)f {ae(d) + (Bf)ce},
we find by (2) that
(ad -+ be)e/ (bd)f = {ae(df) + (Bfyce} /B )
then by (3), (4), and U.1 we find
{(ad + boy/bd} (o/f) = aeftf +ee/df. (D

Finally, by (4}, (3), and C.1 we have « \
(/b + ¢/d) e/ = (@/D)e/f) + (¢/d) (Bif)
which is the required distributive property- N

30.2. The rational field. In previous chaptérs we have presented
the notions of an equivalence relation (17.2), of a group of trans-
formations (11.2), and of an abstract gronp (following EX. 18.8). A
somewhat more elaborate mathematioal system, at least in the sense
of the number of operations ju¥olved, is the “abstract field” de-
seribed by the following definition.

An absiract field is a seb F of elements a@.b,...s with a relation,
called equality, usua]lyﬁritten a = b, and two operations: one called
addition, written a'{\b; and the other called multiplication, written
ab, all subject to(the Following postulates:

F.l: Th{ ‘&Iﬁality defined in F is an equivalence relation.

F.2: (Thie elements of F form a commutative group under addi-
tion,.‘v?ﬂ\tn an identity of addition called zero.
\F?r The elements of F, other than zero, form a commutative
\\ group under multiplication. .
¥.4: For all elements of F, the operations of addition and multi-
plication are related by a distributive law
o a(b + ¢} = ab - ac
U.4: The set Ra of all rational numbers, with elements, equality,
addition and multiplication defined as in 30.1, is 2 field, known as the

“rational field.”
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Proof: By U.l the equality defined in Re is an equals relation
so F.1 is satisficd.

By U.3 the addition defined in Ra has some of the properties re-
quired for a commutatlive group. Beyond this we must show the
existence of an identity clement for addition, the number which we
will call “zero.” For this purpose we fiud 0/1 10 be satisfactory,
since a/b + 0/1 = (¢-1 + 5-0)/b-1 = a/h for every a/bin Ra. We
must also show for every a/b in Re the existence of an inverses(or
negative) with respect to addition, i.c., a rational number 2/y\$hch
that a/b + z/y = 0/1. Without diflicully we see thal 2/ &y—a/b
is a suitable choice, since by (3) and (2) in 30,1 we ha}-'f.::\

a/b 4 (—a)/b = (ba + b(—a))/b = 0 bz O)L.

Thus the numbers of Re [orm a commutative gi-’(:u;} under addition,
so F.2 is satisfied. \

By U.2 the multiplication defined in B@‘r’r}s some of the properties
required for a commutative group. \Biyond this we must show
the existence of an identily elementor multiplication. For this
purpose we find 1/1 to he satisfg:élory, since (a/D)(1/1) = a/b for
every a/bin Ra. Then for evergtnon-zero number a/b of Ra we must
produce an inverse {(or rccipnég’al’) with respect to multiplication, i.e'.,
a rational number z/y sudh\that (a/b)(z/y) = 1/1; furthermore, this
inverse must be non-zera™ First we will use (2) of 30.1 to check that
a/b = 0/1 if and onlyif ¢ = a-1 = -0 = 0; so a non-zero rational
number a/b is chitvacterized by having @ > 0. If @ > 0, then b/a
is a non-zero w&tional number such that (a/b)(h/a) = ab/be = 1/1;
if @ < 0, then’ —b/—a is a non-zero rational number such ‘that
(a/ b)('—f?{ f'?‘a) = —ab/—ba = 1/1; hence every mnon-zero rational
numbef“tias a non-zero inverse with respect to multiplication. Thus
the fien-zero numbers of Ra form a commutative group with respect
40 multiplication, so F.3 is satisfied.

'The distributive relation between addition and multiplication for
the system Ra is included in U.3, so F.4 is satisficd.

Thus the system Re has been shown to satisfy all the pOS'tlﬂateS
required of a field, so the prool of U.4 is complete.

30.3. The rational domain. Let us consider a mathematical
system D having all the properties F.1, F.2, F.3, F.4, of a field,
except that one of the postulates implied by F.3 is replaced by 2
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weaker postulate; namely, the requirement, included in F.3, that
every non-zero element of D have an inverse with respect to multi-
plication is to be replaced by the weaker requirement that the can-
cellation law of maltiplication be valid for all non-zero numbers of D,
Such a system D is called an abstract domain.

As is implied by our use of the adjective “weaker,” every field is a
domain, but not every domain is a field. Consider in a field F the
equation ab = ge¢ with ¢ not-zero; then @ has an inverse ¢ such that
za = ¢, where e is the idenlity of multiplication; by the wcll-defined
property of multiplication and by the associative law we find, O),

b= eb = (za)b = z(ab) = x{ac) = {za)c = ec = ;:,~:\

so the cancellation law of multiplication is valid for falf NON-ZEro
numbers of a field; thus every field is a domain, ‘

On the other hand, the integers form a good example of a domain
which is not a field. For in Chapter 29 in thgerams N.1, N.2, N.3,
N.6, N.7, N.8 we have the necessary proin-tws to prove that the
integers form a domain; but among thedufegers only the units 41
and. —1 have inverses which are integersyso the integers fail to form
a field. We shall now demonst-;at}é ‘why the integers are called
rational infegers and why the domgain of integers is called the rafional
domain. N

U.5: In the rational ficdd"Ra the set [Ra] of all rational numbers
of the form /1, eac\&i‘"ﬁhich is called a “rational integer,” is a
domain, called the *zational domain,” which is isomorphic to the
domain of all infégers with respect to equality, addition, and multi-
plication.  ,\J

Proof:.\Wé check readity from a/1 +5/1= (@ +5)/1 and
(a/;l)(lg/.l)\= ab/1 that the set [Ra] is closed under addition and
:mul;tipli’éation. Since the set includes the zero 0/1, the negative
Y of a/1, and the identity 1/1, it follows readily from the fact
that Re is a field, that its subsct. [ Ra] is a domain (in particular, the
cancellation law is valid for the non-zcro numbers of a field}.

Morcover the one-to-one correspondence 7' defined by T = 1;1/ 1
between integers and rational integers is preserved under the equality,
addition, and multiplication rules of the twc systems. Thus by
definilion of the correspondence T we have aT = a/1, bT = b/1,
(@ + b)T = (a + b)/1, and {(ab)T = ab/1. Since ¢/l = b/1 if and
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only if @ = b, the correspondence is one-to-one and preserves equiva-
lence relations; since (@ + )T = (@ + /1 = a/1 + b/1 = aT + 0T,
the correspondence preserves the addition operations; and since
(ab)T = ab/1 = {a/D(B/1) = (@HT), the correspondence  also
preserves the multiplication operations.

Henceforth, making use of the isomorphism which we have just
established, we shall refer to the integers—positive, negative, and
zero—as ralional infegers; however, we shall not usually want to write
a/1 for a rational integer, but shall employ the simpler notatieh.d.
Because of the isomorphism there is little danger of cofifusion,
Moreover, since in later lessons we want 1o study other dongéihs whose
elements also are called “integers,” it will be helpful tohave the full
title of “‘rational integers” to designate the elcm,eliifs of this most
fundamental, prototype domain [ Ra]. N

30.4. Order and absolute value for ;an%hal numbers. Defi-
nition (5) in 30.1 defines order among thewrational numbers in terms
of the previously studied order for (rational) integers.

U.6: Order in Ba is well defjﬂéii’, trichotomous, and transitive.

Proof: If a/b= A/B ahd ‘¢/d = C/D, then aB = bA and
¢D = dC. It a/b < c/d, then by (5) we must have ad < be. Since
BD > 0, we may write (bA)dD = (aB)dD = (ed)BD < (be)BD =
bB(cD) = bB(dC), Bincebd > 0, we conclude that AD < BC, whence
A/B < C/D, so that the order relation in Ra is well defised.

Tn integersiwe know that one and only one of the cases ad < ¥,
ad = be, orvbe-<. ad will hold; hence in Re, one and only one of the
cases ay’Ql:{ ¢/d, a/b = ¢/d, ¢/d < a/b will bold, which is the tr-
chotoray law for Ra.

Afeyb < ¢/dand ¢/d < e/f, then ad < beand ¢f < de. Sincef > 0

sand b > 0, we may write (ad)f < (be)f = blef) < blde); then 10Ce

d > 0, we conclude that af < be, or that a/b < ¢/f. Thus the order
relation in Ra is transitive. This completes the proof of U.6.

In particular, if 0/1 < a/b, we shall call a/b a “positive” rational
number; if a/b < 0/1, we shall call a/b a “negative” rational number-
By the trichotomy property in U.6, all the rational numbers -faﬂ
into three classes: positive, zero, and negatives. The rule of s188°
for multiplication of these classes parallels that for integers given 1t
™N.9 of 29.2.
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Let us define the notion of absolute value for rational numbers in
terms of the absolute value of integers as follows:

(6) Absolute value: |a/b]=al/b. '
The following facts may be readily established:

U.7.1: }a/b] is non-negative.

U.7.2: la/b| is zero, if and only if ¢/b = 0/1.

UT.3: |(a/b)(e/d)] = [a/blle/dl.

U.l4: |a/b+o/d| S la/bl+le/dl ' <O

O\

Proof: Properties U.7.1 and U.7.2 of absolute value in Fafollow
readily from definition (6). Properties U.7.3 and U.7. 4 may be
established by considering the various cases that arige‘according as
one of @ and ¢ is zero, according as @ and ¢ have like’or unlike signs,
and according as |a/b| or |¢/d| is the grealer,\op that |a/b} =¢/d|.

 EXERCISES 0O

ex. 30.1. Show that U.1, U.2, U.3 a}‘@?ﬁiﬂl valid when the only restriction
placed on the number a/b is that P (. But show that order defined
by (5) would now fail to be well ‘defined.

£x. 30.9. If m is composite, show that residue classes of integers mod m do
not form a domain. ('S‘éb,\l&l.)

£x. 30.3. If pis a prime, show that residue classes of integers mod p form a
field (known as a/Galois field, GF( F )N

gx. 30.4. Fstablish’the rule of signs for multiplication of positive and
negative rational numbers.

Ex. 30.5. U~d/b < c/d, show that a/b+e/f < ¢/d+ e/f for any ¢/f in
Ra; pabithat (a/b)(e/f) < (e/d)(e/) if and only if 0/1 < e/f.

EX. 30.6;.: Show that in any domain the zero z has the property that az =z
forevery element a in the domain. '

\30.7. Give the details in the proof of U.7.1, U.7.2, U.7.3, U714

£Y 30.8. Show that Ra contains no solutions of the equations (z/y) (g/¥v) =
(—1/1) and (z/y)(e/y) = (/1) : .

gx. 30.9. Consider a system G made up of ordered pairs (4,B) of rational
numbers A = ai/az and B= by/bs. Define:
equality: (4,B) = (C.D) if and only if A = B and C=D;
addition: (4,B)+ (C.D)= {4+ C.B -+ D);
multiplication: (4,B)(G,D) = (AG — BD,AD + BC).
Prove that G is a field (known as the Gaussian field).
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Ex. 30.10. Show that G contains a subfield G* made up of all numbers of G
of the form (4,0). Show that the mapping T defined by AT = (4,0)
is an isomorphism between Ra and G*.
Ex. 30.41. Show that (G contains a domain [G] made up of all numbers of G
of the form (A,B) where A and B are rational integers, A = ¢/1, B = b/1.
EX. 30.42. Show that G contains numbers (X,Y) solving (X, Y)(X\Y) =
—1/1,0).
Ex. 30.12. Show that G does nef conlain any numbers (XY} solffing
(X, YH{X,Y) = (2/1,0).
ex. 30.14. Define a point (x.y) of a rectangular coordinate sy sterm. ﬁ; be a
“rational point” if and only if both = and y are rational numh}ls
{a) Describe accumtely all the infinifely many raiwnmf pomts on the
locas of 2 4- y2 = 1.
{b} Prove that there are onfy four rafional pw\és on the locus of

ot tyt=




P The student who hes this far faken the
system of real numbers jor granled, and
worked with them, may continue to do sv
lo the end of his life without detrimend to kis
mathematical thought. On the other hand,
most mathematicians are curious, af one
time or another in their lives, lo see how the
system of real numbers can be evolved from
the naturel numbers. —Ww. F. 05GOOD
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31.1. Decimal fractions, “Jf the base for representing rational
integess is the usual based9, then it is of particalar interest to study
decimal fractions a/b,owhere we limit the denominator b to be (?f the
form b = 10° with The exponent k & non-negative integer, inter-
preting 10° = 1,.~-1F0r such decimal fractions there is a convenient
positional n(gteiti“o’h which we shall now describe i detail. -
Since weJ y express a > 0 in the form
a&ﬁ10m+...+a110+a0; 0 < an < 1 )
\ 0<a<10,0Zi<m

&«
S

'it\ff";;ﬂ;:)ws that when @ > 0 we may write
0/10° = anl07/10% + ... + as10/10% + ao/10°

It m = k, we have

a/10% = 107" + ... Apial0 -+ ax 4 ap-1/10 .
e /10 o/ 10%;

* is, i +arv chapter, but sections 31.4 and 3L.5
Chapter 31 is, in genersl, a supplementary chap s ond $1.5

merit special sttention since they present jnteresting &
material from previous chapters.
223
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and if we define by = @, for t = 0,1,...,m, then we may write
a/10* in “decimal notation” as follows:
a{lO" = bm_k. . .blba.b_lb_z. . .b_],. .

In this notation, if j = 0, we are to interpret b; by its j - 1 position
to the left of the period or “decimal point” to represent b;107; but if
j > 0, we are to interpret b_; by its jth position to Lhe right of the
decimal point to Tepresent the decimal fraction b_;/107; then if the
whole symbol is understood to represent the sum of theséspom-

N

ponents, it correctly represents a /10%, O\

If m < k, we again set bi_i = @, and find ®

a/10% = @n/10™ + ... +@/10*7 + ao/10F 8 +
= b_(k_,,,)/lok"" + ... + b (k_n/].{]"jf' ;l— b_kzl(}k.

But in this case to effect a suitable positional notation, #fk-m>1.
we must define by = b_g = ... = b_g—m-1) =0 that in the symbol
a/10% = .00, . b gh i bk
we will have b_; occurring in the jth~poSition to the right of the

decimal point. Y
Thus, for examples, we have
30.302 = 30 + 3/10:4-2/1000 = 31302/1000;
L0071 = 7/1000%% 1/10000 = 71/10000.
In particular we want to observe that when j = i + 1,
(31.1) QB 0b_qisy. - by < /107
For the inequalityxie be checked is equivalent, by the definitions
above, to the following inequality:
(Bl 00 + ... + b_p)/107 < 1/10%
which reduses’to the following inequality in iniegers
WO Boeml0@ 4 by < 104 .
But thislast inequality is known to be valid because of the restriction
0.5, < 10 on all of the b’s.
~\\IE g < 0 we may employ the above notation for (—a)/10% and
write a/10* = — {(—a)/10*}, prefixing the negative sign t0 the
decimal representation.

The set D of all decimal fractions is a domain, but not a field; for
D is closed under addition and multiplication, contains 0/1 and /L
and has all the other properties for a domain because D is a subset
of Ra: however, D is nof a field because the inverse of a non-zer°
fraction a/10% of D is in D if and only if a is of the form 2°5%, 5 £ 0,
{= 0. For example, although 7/2 = 35/10 is in D, the inverse
rational number 2/7 is not in D.
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However, we can introduce a larger number system which contains
pumbers isomorphic to the rational numbers in such a way that we
shall be able to represent any rational number (or, more precisely,
its isomorphic image) using only decimal fractions. This enlarged
pumber system is known as the “real number system’ or {since it
does have the required properties) as the *real field.”

The device which we use in making this extension is already known
to the reader, for he is accustomed to “approximating” a fraction
such as 2/7 by an appropriately chosen decimal fraction, such a8 -
985714285714. Here it will be worth while to examine the method
of finding an appropriate decimal {fraction, the exact meaning of the
approximation, and the periodic character of the represgr;gtaﬁon, for
these matters are closely related to the division algosithm, to the
properties of inequalities and absolute value, and .tl's').the theory of
congruences, and these seem proper subjects forna lesson in the
theory of numbers. AN

N v .
31.2. Regular sequences. We shallbe. interested in this section
in infinite sequences of rational pumbers: Fach such sequence may
be indicated by @, @z, .- -5 Gus - .. Sor more briefly by {a:l.

A regular sequence {a:} s an jnfinite sequence of rational numbers,
such that for any assigned positive rational number ¢ however
small, it is possible to find. & vorresponding rational integer N = N(e)
80 that (\J '

]aN\E a;| < e for all t > N(e):

Tt is important,to observe about this definition oi: a regular
gequence, tha ~i:t~\is not necessary to find one N which will serve fc.;r
all choices of ¢ rather, all that is required is that each time an €18
selected{}ﬁaf it shall be possible to find the corresponding N(&—
purposdly written this way to emphasize that IV depen_ds upon e.
When a sequence is regular what will ordinarily happen is that as ¢
s bhosen smaller and smaller, N(e) must be selected larger and
larger. On the olher hand, it is not sufficient to guarantee that a
sequence is regular to produce an N(e) suitable for one assigned €;
we must be able to find an N(e) for any assigned e

The sequonce {a;} where & = 21 is nof a regular sequence, for

even with ¢ = 1 it is impossible to make la; — a;] < e whenever 1% i
ery value of 118 @ trivial

The sequence }ja;} where &; = 1/3 for ev 1y
example of a regular sequence, for no matter how gmall the positive
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rational number e is chosen, we may take N(e¢) = 1 and guarantee
lay — a;| < efori > 1, inasmuch as a; — a; = 0 for all { and J.

A less trivial example is provided by the sequence {a:} where
@, =1 —1/2%. Herea; —a;=1/2' — 1/2/, hence by U.7.4: of 30.4
we may write |a; — a:] < 1/2¢ +1/2. But when j < i, we have
2¢ < 2¢and 1/2’ > 1/2%; hence by Ex. 30.5 we have |a; — a:| < 2/2
when i > j. Given e = a/b, positive, however small, wé can make
2/24 < a/b = e or 2%a > 2b, by choosing J sufficiently large; faf b
in the binary system, 2b = b.2™ + ... + b2, then j = m £ will
suffice. Using the transitive property (see U.6 in 30.4) Wwe may
take V(¢) = m + 1 and have A\

lay — a;] < € wheni > N. e \ e
(For example, if ¢ = 1/5000, then 2b = 10¢# =3@0“011100010000)2,
m =13, N(¢) = 14, and |a; — a;] < 1/50000{6r { > 14.) Thus

{a:} is a regular sequence. IRV
A fundamental example involving deeimal fractions may be de-
scribed as follows.  Let bubomer, . . . bobsY;- . b, .. be any infinile

sequence of integers b; satisfying 0 £\ by < 10; define a corresponding
sequence {a:} of decimal fractionsias {ollows: a; = Bo. . bo by . b
A sequence of this type willjie‘i:allcd an “inlinite decimal,” desig-
nated by e -

{ﬂi’}{%\bm. . .50.5_1- . .b_,‘. vas

Theorem: An ‘iﬁﬁ}lite decimal is a regular sequence.

Proof: If i,87j,"then we may apply (31.7) to see that
'\CL;'—' iy = 00, . .Ob_(j+1) .. .b_" < 1/10""
Hence if we.are given € = a/b > 0 with b = ¢10° + ... + 10+
and 0 =< 10, we may make 1/10/ < e if we can make 10% > b;
but. this is easily arranged by taking j = ¢+ 1. So we select.
J&I{Q = { 4 1 and by U.6 we have

N/ lay — ;] < ¢ when i 2> N.

Thus we have shown {a:} = bam.. . bp.b1.. .0y O be a regular
sequence.

31.3. The real number system. The concepts of the preceding
sections may be used to define the real number system.

(1) Real numbers: A teal number is a regular sequence {a:d of
rational numbers; and cvery regular sequence of rational numbers
deflines a real number.
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(2) Equality: Two real numbers {a;} and {b;} are said %o be
equal, written {a:] = {b;}, if and only if for amy given positive
rational pumber e, there exists an integer N(e) snch that |a; — bi] < ¢
when [ > N.

(3) Addition: The sum of two real numbers {a;} and {b} is
defined to be the sequence {e:} in which e; = a: -+ bi

(4) Multiplication: The product of two real numbers {a:} and
(b} is defined to be the sequence {e:} in which ¢; = a:bs. N

Logically we should now proceed to prove the theorem: “fIIl}e set
Re of all real numbers forms a field, known as the real ﬁe]\d."’ >But
all the details would take us too far afield from our maiR/purpose;
%0 we shall be content with suggesting a few pertinefit exercises at
~ the end of this lesson and with referring the readetto other texts,

such as that of MacDuffee cited in 1.3. 3,

It is of particular interest that among the real numbers Re there
s a subset isomorphic to Ra. The sub ¥in question contains all
sequences of the type {a;} where a: =g for all i; these sequences
may be designated {a] and are of a ‘type where it is trivial to show
that they are regular and hened® represent real numbers. The
suitable correspondence T' tp.'éétablish the isomorphism is defined

by aT = {a}. N

Knowing that eveq@ational number @ i3 representfad, isomor-
phically speaking, Ka,certain real number {a}], we question whether
{a} can be written'as an infinite decimal, If this proves possible,
it will remedy-in’a sense the difficulties encountered in 311 in
studying the'domain D of finite decimal {ractions. For example, 1t
is seen thdt 1,3 is not in D; but now we ask whether {1/3} may be
writte \és"an infinite decimal, L.e., 18 there a real number of the type
{a£}'~.‘=[\bm. " bobr. . b, .. which is “equal” to {1/3.
;‘Tl;é reader is already familiar with the answer, although .1;he
““giiestion may never have been put to him in such a hard (precise)
way. For we can. show _

{1/3) = 0.333... withb;=0foriZ 0 and b_; = 3for i > 0.
For if we set {c:} = {1/3}, with e: = 1/3 for all i; and if we set
{a;} = 0.333..., then we have . :

a. = (3/10){1 +-1/10 + (/10 + ... + (1/10)*}
and by applying EX. 3.2, we find _
a0 {1 — (/104 /(L — 1/10) = (/31— (/107
Hence [o; — a:| = (1/3)(1 /10)* and can be-made less than any given
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positive rational number ¢ by taking i sufficiently large. Therefore
by definition (2) it follows that {e;} = {a:} or that {1/3} =
0.333...

To answer the same question in the gencral case will lead us toa
situation that is more obviously part of the theory of numbers. By
thesc preliminary sections we hope to have placed the problem on a
sound logical basis. N
31.4. Periodic infinite decimals. An infinite decimal

Bo. . Boba o hogl R\,
will be said to be periodic or repealing if there exist, tagd integers
s = 0 and k > 0 such that N
b,—b., wheneveri>s, £’ >s, t = anod k.

For example, it was shown above that {1/3()is represented by
0.333. .. which is a periodic infinite decima]\having s=0andk=1L

For a periodic infinite decimal we shall ii§e"the notation

{@c) = bm. . Bo.ba. - BNy - - Bcern
with a dot above the number b_;,s ‘ahd another dot above bt
if k = 1, only one dot will be required.

We shall call Q@ = b.... byothe “whole number part” of {ails
S = .b_y...b_,, the “non-repeéating part”; and P = b_s1n- - SDoterns
the “repeating part.” /4

In this termirlolqu&f?he example given above would appeal 25
0.3, indicating thatOu= 0,8 = 0, P = 3,5 = 0,k = 1. In31.04125,
we have Q = 31, Q= .04, P = 123, s = 2, k = 3. [In 3027.027, W8
have @ = 303%,58 = 0, P = 27, s = 0, k = 3. In5.0125,a “finite”
decimal {ra¢tion, we may interpret the notation to indicate that
Q= 5,){% 0125, P =0, s = 4, k = 1; sometimes we ghall refer
to this case as that of a “terminating” decimal; most of the time we
sl}all pprefer, for uniformily, to think of this casc as a periodic infinite
<ﬂgcfmal with P =0,k = 1.

Theorem: Every periodic infinite decimal represents a rational
real number.

Proof: Using the terminology introduced above, if
fas} = bm. . Boboa. . bosbogan. Do
then for ¢ = 0 we have, again using EX. 3.2,
Gurat = Q8 + (P/AO {1 + (/109 + ... + (1/1097)
=0 +8 4 (P/10+9) {1 — (1/10%) ¢} /(1 — 1/107)
=0 + 8+ {P/10°(10* — 1)} {1 — (1/109}.
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For any { = s, We may set i — § = (q—VDk+r0sr<kqzl
and have Gapeni < @i < Gepgrr LboD if we sct
(31.2) X =048+ P/10s(W0 -1
we have @; — X < e — X = — P/HpEER(10F — 1),
Since P < 108 — Land i < s + gk, it follows that
la; — X< /10 < 1/10¢, L= s
Since we may make 1/10% < ¢ for any assigned positive rational
number ¢ by choosing i sufficiently large, it [ollows that fa} = (XEEN
Hence we conclude that the given periodic infinite decimal represents
{he rational number X of (34.2) in its “real digguise” of {X Jod N’ 2
For example, using this theorem we may show that: _\ N
3104123 = 31 -+ 4/100 + 123/99900 = 31 -+ 1373/33300;
2027.027 — 3027 4 27/999 = 3027 + 1/3T; (~\"
5.0125 = 5 -+ 125/10000 = 5 4 1/80 = 40180y
5.01240 = 3 - 124/10000 -+ 9/90000 ='f§§[{l¢{80.

Converse theorem: Any positive rqti{)}kéi real number {a/b}
may be ropresented by a periodic inﬁn;'{té,,décimal.
Proof: With a >0, >0, we may use the division algorithm to
write ' o
(31.3) a = Qb+ o P rn<h Q20
Then as in Chapter 4 e, may represent Q in the base 10 as
Q= bp...b We ma-y\’&ée ‘the division algorithm to find

0k = @b + 1, o< <b _
Since 0 < ry < BV {ollows on the one hand that 0 < 107, so that
—b < —n s.fﬁb‘; hence 0 < i} on the other hand, 107 < 105, so
that qb é\g} 47 < 10, hence 0 < ¢q <10, We continue the
algorithaiih this same manner with
GLHMOry = g+ 0Sre<h 020 <10, izl
tntil for minimal values of s and k we arrive at Tspp = Tor whereupon
we conclude the algorithm. The conclusion will certainly be reached
in at most b steps, for from the restriction 0 = ¢ < b there are oniy
b different possible remainders. We now define
S="_.q. -9 and P = @sr1.--Qatk

and assert that

{&/b} = bm. . .bo.t_’h. . -QS‘.18+1- . -‘;:['a-i—k .
One way to establish this equality is to use the direct theorem
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ahove which asserts that the periodic infinite decimal which we have
constructed is equal to { X}, where
: X=0+S+P/1010* 1) .
For from the relations (31.3) and (31.4) we have a/b =0 + ny/b,
0 = q/10 — ro/b + /100, .., 0 = q,/10% — 1y 1/10°7T + 1,/10%,
and upon adding these equations and noting the telescoping cancella-
tions, we find ~
a/b =0+ S+ r./10%. R
Again using (31.4) we may write S \J)
ro/10% = @upa/10 + ropa /1074, K

0 = goq2/10%%2 — 1,y /10"Hh i"_.,-.{_2__-":10:'{2?)}. .

0 = gos/10°HF — Poqaot/1077571h “i,,&;%}""m T,
Upon adding these equations we find \4

r/10°b = P/10°% - 1y D0,
Recalling that r,.; = r,, We may soive thislast cquation to show
r/10% = P/1010% — 1).

Combining these results we see that X = a/b which completes the
proof. N __
The reader will recall from elerentary arithmetic that the division

" process represented by (37 J) may be carried out very handily by.
mentally shifting the desimal point ore place to the right at each
step, corresponding %o the multiplication of the preceding remaintller
by 10. For example, to find the periodic infinite decimal representing
12/7} we may, a}rrénge our work as {ollows: :

\\" .285714
’§ 7 |2.000000 =2 Q=0
R\ 14
~O _ 60 n==6 q=2
y 56
\ 40 re=4, =28
35
50 r = 5, ffz = 5>
1 _
10 n=1 @="T1
T
30 =3 =1L
28

2 re =2, G‘a=4-
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Since re = rpwe have s =0, k = 6, and {2/7} = 0.285714.

From the slandpoint of number theory it is of interest that we can
predict, the minimal values of s and & in the above theorem without
carrying through the complete division algorithm.

Theorem: I b= 2754 where {4,10) =1 and if (g, =1,
then in the division algorithm for finding the periodic infinite decimal
representing {a/b) the minimal values of s and k for which roye =1,
. are given as follows: s is the maximurn of z and y and k is the exponent

to which 10 belongs medulo A. _ O\
Proof: Equations (31.3) and (31.4) may be ‘written .?ES«\CGII—
gruences mod b as follows: ~‘
a=ry, 10r;=r;modb, izl (¥

Since 10 == 10 mod b, these congruences are cquivalénf to
10%a = r; mod b, AERUN J
Then to have r..; = r., wec must have x\
10++4¢ = 10%a mod b}
and since (a,B) = 1, we must have o™
10%+% = 1{5’{”51:0(1 b
for minimal values of s and k“VThe last congruence requires the
exislence of an integer { such(that
10°10%> 1) = b = i275%A. _
Sinee 24 and 5 arc rélatively prime to 10F — 1, it follows that they
musf, divide 2¢ and(37, respectively; hence § must be at, least as large
as the mamimu.n(of » and y. If we suppose § s0 chosen, we are able
to find a sn%ﬁe valae of &, for the condition above reduces to
N 9r-r5i-u(10* — 1) = {A.
Since 6410) = 1, tliis implies that A must divide 107 — 1, or in
tepmenaf congruences that 10% = 1 mod A. Since (A4,10) = I we
may/use the language of 2L.1 to assert that a positive mteger k with
this property exists and that the minimal value of k which we seek
is the exponent to which 10 belongs modulo 4. This completes the
proof except for the comment that the choice made above guarantees
that g, 5= q,yz, for if ¢, = gure We would bave from re = Tapp a0d
(31.4) that r,_y = F+_yss, Which would contradict the argument given
above; hence the first digit of the repeating part 18 definitely o1
where ¢ is the maximum of « and ¥
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Thus in considering {17/520}, when we have found 520 = 235113
and 10¢ = 1 mod 13, we see that s = 3 and k = 6; hence we may
predict {17/520} = 0. qugapsdqsgstidse- I fact, by actual compata-
tion we find {17/520} = 0.032602307. If (¢,520) = 1, then the last
theorem shows that {a/520} will also have s = 3 and k& = 6.

A fow of the numerous corollatics to the above theorcm are given .
in the exercises which follow this lesson. For example, the division
algorithm leads to a terminaling decimal representation (k =1,
P = 0) for {a/b} if and only if i has the form b = 2737, sce BX. 3010,

From the preceding theorems we may be tempted togdrayw the
conclusion that rational real numbers and periodic infin{te decimals
are in one-to-one correspondence. But this is not quite correct, the
missing step in the argument being that we have1 301; ivesligated the
uniqueness of representation hy mcans of irtfinte decimals. The
example 5.01250 = 5.01249, given earlier, Qrpvides a partial clue.

If we define two infinite decimals AN

.. .boboy. . by, and b’m’,\,’.b’u_b’_l, bl
to be distinet if there exists an intedep f such that b, b/, then the

correct situation is as follows: two'distinct infinite decimals represent
distinet real numbers, exceptin the case of terminating infinite
decimals (k = 1, P = 0) when two representations are possible, see
Ex. 31.11. £

14 now follows that™an infinitc decimal represents a rational real
number if and ouly4if the infinite decimal is periodic. For our first
theorem states,_that every periodic infinite decimal represents 2
rational real aumiber. Our second theorem shows that cvery ral;im}al
real numbci@may be represented by at least one periodic infinte
decimal (The theorem of the preceding paragraph shows that a
ratippa]‘ real number may, in general, be represented by only oné
infinite decimal; even in the exceptional case there are only w0
gﬁor'responding infinite decimals, and these are both periodic. )

Tnasmuch as we can write infinitc decimals that are not periodic,
but which are regular sequences and hence real pumbers, it follows
that there exist real numbers other than rational real pumbers all
these are called irrafional real numbers. [t is correct 10 iden .tlf.}r
irrational real numbers with non-periodic infinite decimals, since 1318
possible to show that every rcal number may be represented by 2%
infinite decimal (see Ex. 37.13), and an irrational real namber, Y
only one infinite decimal, in view of the unicueness theorert above-
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A simple example of an irrational real number is 4/2. For in
x. 15.3 and again in EX. 30.8 we have seen that there is no rational
number z/y satisfying (z/y)? = 2. But by seeking integers X such
that X2 < 2(10)% < (X; -+ 1)2 we find a real number {X;/10%}
such that {X:/10}2 = {2}. Tt follows readily that 10X; = Xiu <
X1 +1 £ 10X, 4 10; hence the digits of X,y differ at most in
the unils place from those in 10X;; thus the digits may be found
recursively and {X./10‘} appcars as an infinite decimal, albeitéa™
non-periodic one, obtainable to any desired number of decimal places.
Tn fact by setting Xuq = 10X:+q, 0 £ g <9, we see thatthe.
algorithm proposed above is one of finding the maximun, value of ¢
such that 2(10)2+1 > X2 = 102X + 20X + .6 juch that

2(10)K#+D — 102X2 > (20X + @

This algorithm may be conveniently condenstd in the following
manner which will be recognized as the “square-root process” given
in many elementary arithmetics, usually without proof. _

1 4 1 4 ™

2. 00 00 00=i Xo=1
i o
b N
20X+ q=24, |1 00 = 10— (10X0)% @=4 Xy= 1
96 L
20X, + ¢2 = 281, 00 = 10— (10X @ =1, Xp= 141
x2r 8l
20X, + g5 = 2824, |\, 1 19 00= 105m — (10X)% gz =4, X3 = 1414
o 1 12 96

O ¢ 04 = 10%m — (10X

7.3
In thisfaganmer we find 4/2 = 1.41421... . . ]
In the lesson which follows we shall be particularly interested in

SU({h\'E}iiadratic irrationalities for we shall discover & sense in which

,{he;sc are the most regular of irrational real numbers.
31.5. Basimal fractions.
sion of the preceding sections might we
general by taking any desired fixed integer B
B = 190, as the base number in the representation.
Beginning as in Chapter 4, we know that a given pos
may be represented in the form
¢=a,B"+ .. +aB+al<dn < B;

Tt is reasopably clear that the discus-
11 have been made more
> 1, not necessarily

itive integer &

Oga;<B,0§i<m.
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We take the liberty of calling a/B* a *‘basimel fraction,” inasmuch
as the adjective “decimal” js by its Latin original meaning suitable
only when B = 10; then paralleling 31.1, we use a positional notation
with a “basimal poinl” to write

ﬂ,./Bk = hp_r.. .bg‘b_b by or CLE-"’B;”‘ = 0.0.. ,()h_(_{- e .b_k

according as B £ m or k > m, with b, , = a;. Where the conlext
does not, indicate the value of B, parentheses and a subseript niaj be
wsed. For example, O\
(3.1052) = 3 + 1/6 + 5/6° 4 2/6+. O

If bobmrs. . bobos. . ... i3 & given sequcng;é ob integers b;
satisfying 0 < b; < B, we may decline a correspondiilg scquence {as}
of rational nuinbers a; as follows: ¢

s = (b . boby. {y\}g

A sequence of this type will be called ar'bff'i'tiﬁnite busimal,” designated
by {a:;} = (Bm. . .bo. by, . b_s...) 5\ AT infinite basimal is a regular
sequence (see BX. 31.135). o 2

An infinite basimal will be8aid to be periodic il there exist two
integers s = 0 and k > Q. such that b_, = b_¢/ whenever £ > 5
# >3 and { =1 mod{l A periodic infinite basimal will be
denoted by \\i )

fa:d 'j——:(bm‘ chobo s Bob - ) B

Every periodié :ix\lﬁnite basimal represents a rational real number | X}
(see EX. 34.46). Conversely, every positive rational real number
may hqoiépfcsentcd by a periodic infinite basimal (see £x. 31 A7)

If Jo® standard form B = pifpa. . . pys, s > 0, po < Pists if
bs.ﬁ\‘j)i”lpz”ﬂ. .. pe”eA, where (4,B) = 1, and if (¢,b) = 1, then in the

sriodic infinite basimal representing {a/b] to the base B the minimE}l
value for s is the smallest inleger greater than or equal to the masl-
mum of ;/$,%2/Se,. . .,Zx/sx and the minimal value for & 18 the
exponent to which B belongs modulo A (see xx. 31.18).

For example, if B = 223, we may use ¢ =9+ 1, L =12 +1
B =L + 1 and may considér finding the infinite basjmal to represent
[15/260) 5. Since (260)5 = (360), = 29325, we have @/st = /%
23/ss = 2 s0 that s = 2. Since B = 2 mod 5, we find that B belongs
fo 4 mod 5 so that & = 4. By the theorem we may predict that
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§15/260) g = (0. qu2gsg40ss) - 'The division algorithm in the base
B appears as follows: ' .

069724 .
26¢ | 15.00 bage B = 223
13 00
2 000 zg=041
1 x60
1600 L=z+1 O
1560 O\
600 B=L+1 "
1000 o\
LOQ ..s'\'\ .
200 \N%

Hence {15/260} 5z = (0.{}69724) &, a8 predigted.
E[t- is of some interest to sce that the sam@rational number expanded
in various bases may have different periodic character. Thus for the
example just given (15/260) 5 = (1%/360)xn. Since 10 = 2'5! we find
s = 3; since 10 =1 mod 9 wei)xave k= 1; in fact (17/360} =
(0.0472)y. N

A periodic infinite basimafié gaid to be terminating itk =1, P =0. -
A rational real numbez-§gyb} has a terminating basimal representa-
tion to the base Q\Etplslpz‘*. ..pi’+ only if b= piFipa”. .. prTH
;= 0. \ .

Two infinite’hi&imals are said to be distinct if for some integer

L b, = b, . Distinet infinite basimals represent unequal real num-

bers, e C,elé,t' in the case of terminating infinite basimals for which
one with k = 1, P = 0, the other

two T Sentations are possible,
withg=1, P =8 — L
. Tinally, every real number may be re
bhsimal: rational real numbers il and only
periodic; irrational real numbers if and only
non-periodic.

presented by an infinite
if the infinite basimal is
if the infinite basimal is

EXERCISES

ux. 31.4. Prove that equality of real numbers is fransilive.
Ex. 31.2. Prove that the sum of two regular sequences is a regular sequence.
so that addition of real numbers is closed.
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Ex. 31.3. Prove that addifion of real numbers is well defined.

gx. 31.4. Prove that malliplication of real numbers is elosed. o

£x. 31.5. Find in lowest terms the rational real numbers represented by
the following infinile decimals:
() 0.0300271; (b) L6121 ; (c) 0.1764705882352941.

gx. 31.6. Predicl the form of the periodic infinite decimals representing the
following rational real numbers:

(a) {3/410); (b} {25/11}; (¢) {16/27}, (d) {353/1004]. N\
Ex. 31.7. If PP’ = 10* — 1, discuss the repeating parts of the pesiodic
infinite decimals repeesenting {1/P} and {1//'}. A

gx. 218, If b= 2°5¥4 with (4,10) = 1, if (a.b) = 1, if (@’b)=>d, and if
a= o mod A, show that ja/b} and {a’/b} have the ilme repeating
part P, in their infinite decimals. O

ex. 31.9. 1If {a/b} has remainders r; and a repeating part P = Gsy1. - Lor b
if (a’,b) = 1 and if 10%’ = r,,; mod b, show that the infinite decimal
representing {a’/b} has a repeating part P’ obtgined from P by a cyclic
advancement of digits. &

Ex. 31.10. Show that the division algorithgisads to a terminating decimal
representation for {a/b} if and only jf b'has the form b = 275"

rx. 31.44. Show that distinct infinite%decimals represent unequal real
numbers, except in the case of {terminating decimuls when two repre-
sentations are possible. (HintConsider four cases, each with { maximal
such that b, = &': (1) b, {b,’—i— 1:(2) b, = b + 1, b, > 0 for amax-
mal u < {; (3) b= bLF1, b, =0 for u<f b/ <9 fora maxiral
p < 1 (&) by = b/ AL, = 0 for u < £, b,/ = 9 for 0 < L) )

Ex. 31.12. U {a;} and {b:} are regular sequences, define fa;} > {b} X
and only if thef¢ exists a rational number ¢ > 0 and an integer N such
that a; — byS>’e for i> N. Prove that this order relation for real
numbers/s fricholomous.

EX. 31.13USe £X. 31.12 to show Lhat any real number {a:} is equal toan
infinite decimal. :

EX. 34,7, Show that the algorithm represented by finding integers %

¢ sich that X3 < 2(10)% < (X;+ 1P constructs an infinile deuimi_ll
{X:/10t} which is a real irrational cube root of 2. Explain why this
algorithm cannot be so convenicntly condensed as the one for syuAare
roots.

EX. 31.15. Eslablish the analog of (31.1) and show that an infinite basimal
is a regular sequence,

EX. 31.16. Show that a periodic infinite basimal represenls a rational real
number {X}, X = Q+ §+ P/B(B* — 1), analogous to (31.2)-

-EX. 31.17.  Using the analogues of (37.3) and (37.4) show thal every posilive
rational number may be represented by a periodic infinite basimal
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31.48. For a periodic infinite basimal tepresenting {e/b}s establish
the theorem given in Lhe text for the minimal values of s and k.

31.19. In regard to periodic basimals show that k must divide (4}
and ${4). (Reecall G.15.1 and EX. 18.7.)

34.20. Tf b= (11)y, investigate (1/b}s for B = 2,3,4,5,6,7,8,9,10,12;
compare with G.17.

21.924. If b= (13}, investigale (a/b)s for a = 1,2,...,b— 1; compare
with Ex. 31.9. . I\
31.92. Show that () (/(B— )s=01; (B) (I/(B+ D)z =
0.0(B=1): (0 (I/(B— DHp=0.0128:..(B—3)(B=1). Ly
31.93. Establish a graphic picture of the periodic character of {a/ tls
by using F(z) = © — [»] and L{z) = z/Bfor 0 = ¢ < B, starting with
F(ro/b) on F and proceeding alternately, horizontally to L.%ndsverjtioq]ly
to F. Thus the tailpiece to this chapter illustrates }L{?g% = (0.0121)s.
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W1 shall sel forth the method of forming
Sractions which is most pleasing lo me loduy
and il will rest in omen’s judgmeni to

appraive whaf they gee —R. BOMBRLLT

CHAPTER 32 N
L\
N
CONTINUED FRACTIONS
R
) ::\\.f
‘\ v

32.1. Finitc continued fractions, (Given the non-negative inte-
ger by and the positive integers by, beg b, we may define, recursively,
the following integers p; and ¢; z,::'."

= hs

(320)  pa=1, po=boppi=bpia +pia LSS
g1=0, 0 =ANi = by + g2, 1 2P 200
We shall call ¢, = Mn a finile continued fraction and denote its

dependence upondyby, . . .,b, by the [ollowing symbol:
o dy = {hoby. . bat

We shall Cii'}!.:ag = pi/qs, Tor 0 £ i < n, the ith convergent of the con-
tinued.’ﬁ’a tion. LEvidently the netation is so chosen that each
cony\éi'gent is itself a continued fraction, ie.,

& 2 a;: = {bg,by,. .. b, <1<

3

The name, continued fraction, can best be cxplained by reviewing
the notion of a complex fraction. We have seer that when ¢ # & then
(¢/d)(z/y) = (a/b) has the solution w/y = ad/be. Howevel by
analogy with the situation when b < 0 and (b/D)(&/y) = (a/1) has

. . . . I of
*Chapter 32 is a hasic chapter, but one which will require some kno“ledgtf;ry
fractions and real numbers such as is given in the preceding supplemen
chapters.
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the solution a/y = a/b, it is natural to write the solution to the first
given cquation in the form (a/b)/(c/d) or a/b, with appropriate
e/d
parenttheses or a longer fraction bar or vinculum to explain the order
of operation which is intended. Such a “fraction” with other frac-
tions in its “numerator” or “dencminator” is called a complex
fraction. DBy repeated use 0{' the rules for ordinary fractions and of
the definitions above in which
(@/5)/ e/ = ad/be \

we may reduce a complex fraction o an ordinary or simple fragion.

A continued fraction makes a good cxercise in this redl}ctién
technique and the exercise reveals why the name contmued fraction
is relevant. For we soon discover that from

Q.

o Y
_ i _ 12 T g l': g 2.‘

gia biagi + @isd’ O _
. (N
we can obtain a; = pi/q: by replacing be_; bf bes + 1/bs. Thus
(b; 1 )101-—2 +p1-— bi(bg‘—-t};g:;? +_p§'—3) + pi—2.=
. T bibergiz + qis) + ¢i-2
(bi—l -+ F)qq'_z + Gi-a (b‘ M-t T G

O bigia g2

'\ o
Hence, for example st}tmg with po/go = bo/1 = bo we find

= b+ 1\ pg — by + 1 P3_ b4

E \b1 ¢ by ; s bl-i--'—l'T
\ 2 - bz'!‘g‘

2 S

Thus Pn/ 7 is really an “n-storied” complex fraction, meaning that

feficdion bars of n dilferent lengths could be used to indicate its StI{l}lC—
tur. Tt is readily appreciated that the notation & = {bmbl},) . mi .
and the rccursive relations (32.1) afford a wnuch Jess cumbEo

symbolism, .
<k <n,
In the same manner if we set Rix = {bi. - Sbids 12 Eﬁzdktl:a:
and replace b; by Ry in the cxpressions for p; and g:, We

pe _ Rusbia TPt
(32.2) 'q_k' — Ré_kqi——l + qi-2
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If the integers b: are small, the successive computations required
by (32.1) may be donc mentally and entered in the following chart,
working from left to right:

b Bo | bl B2 { ba{ ba| ... 1 ba
pll| by | pr| P2 | P3| Pt]| - | P
gtoil (a2l .. 1% ~

Comparison with {(12.5) and the example which follows (£ 3.\5) will
be interesting and suggestive. AN

L
For theoretical purposes it is worth while to note, that the re-
lations (32.7) may be written in matric form: "G

P o by 1 P 4 b: 1IN 20T " gea
P g 1 90 Pi—1 Git 1:'{0 Pi.z iz

Then by an easy induction it follows that “

D . qi h; 1 hi IQ v/ b 1
( ) B ( )Q ):'" “)‘ . ( )’ i g 0.
Pi-t i 1 0/\LY 0 10

Recalling M.7 in 11.3 concedifig determinants, we have the follow- -
ing useful result: o~

(32-3) piqi—’]:“%‘ THo1gy = ('—1) S 1= 0.

It follows at once that-the numerator and denominator of any con-
vergent are relatively prime, ie., (pi,g) = 1, so the convergents are
automatically ifr Jowest terms.

C.1: Asfimite continued fraction represents a positive rational
number;{cofiversely, a positive rational number may be represented
as a finite continued fraction.

g{’réof : The direct proposition is obvious from the definition of a
finite continued fraction. For the converse if the given posttive
rational number is z/y we consider the Euclid algorithm [or finding
d = (z/y) and rewrite the equations of the algorithm in the following
manner:
= by +ro, 0 <rg <y, a/y = by + ro/y = by + 1/(y/ro);
y=br+rd<n<r, y/re = by ri/re = b1+ 1/(ro/r1)s

Feee = bargea + 1 0 < 1o <ria,  Prea/Taon = by re/reas
Fio1 = Drpalss 0=ren, rifrecr = b
+ ; 1 K +
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Ifz =z y, then b, > 0;if & < y, then by = 0. In the other equations
we have b; > 0, i=1,...,k - 1. Hence the finite continued frac-
tion {be.by,. . . ,bry1} exists and by the equations above we see that
this continued fraction, considered as a & - 1-storied complex frac-
tion, is equal to z/vy.

Corollary: I (x¥) = d, to find integers s and { such that
s — fy = Zd it suffices to expand z/v as a finite continued fractiow\
say z/y = {bo,h,....b.} and take f = p,_1, 5§ = ¢,_1. \

Proof: By the theorem a finite continued fraction represe;lﬁng
z/y exists. Since (p.g,) =1 and z/y = p./q., it le’loi?s that
& = p.d, ¥y = g.d. Since (32.3) holds, we may multiply £32.3) by
d and obtain 2¢..; — p.1y = (—1)*'d. Thus W.ibjh‘s = gp1 and
{ = pn_1we have zs — &y = +d \%

For example, since 19/15 =14 4/15, ¥4 =3 +3/4, and
4/3 =1+ 1/3, we have 19/15 = {1,3,1,3}0" From the table of
convergents: PN\

b | L8] L[ 3

ol 1]t a s |

gl o\>1 | 3| a1

we check that (19) (~4‘)\>“(5)(15) = 1 which illustrates the corollary
with 2 = 19,y =18)s = 4,t=5,d=1 .
Using (32.2)@nd’ (32.3) for L £ i <k < n we find
.'\n

- NY Raapi + Py P f—1)* .
(24) a& % Reant - @i 40 G(Roaag + gi_1)
In paijztiéular, when £ = i + 1, we find Rip,0 = bia 80 that
(\{2'\5) iy — @ = (-1)"/9";@54.1, I1=i1<n

Again, when k = i + 2, we find Riy1.us = e - 1/bija s0 that
(32.6) @iz — a; = (=1) e/ Qe 12i<n—1L

C.2: Tor a finite coniinued fraction the successive -convergen‘ts
always have the following order: those of even subscript ocour 1m

increasing order; those of odd subscripf, oceur in decreasing ordegi;'
and every convergent of odd subscripl is greater than every one

even subscript.
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and that B. = 1for 2 = i = 1. Hence when i is ezen, (32.6) shows
@iy > a3 but when @ is odd, (32.6) shows a.i2 < @;; and these
inequalities prove the first two parts of C.2. Let i be any even
integer; then for any odd integer k with k> i we may use (32.4) to
see that a > s since we have previously shown for odd K and k
that ax > ai when K < k, it follows that for any odd k and any even
i we have a; > as, which completes the proof. Q

Proof: Since b; = 1 for iz 1, it follows that ;=1 for i 21

L

For cxample, with as = {2,1,4,2,1,12,31 we find O\
7'\
B S 1] 4] 2 L] 12[43
12l s 1a ] 3| 45 | su?l N s
. P b 3 \

1738

Py

g | 0] 1|1 5 | 11 | 16 P20 625
~y
Here =2 < ar = 14/5 < a; = 45/16 & ey = 1758/625
and a5 = 1758/625 < a5 = 5717203 &y = 31/11 < a1 = 3.
An important property of a convefgent to a finite continued {rac-
tion ig that it is a closer approximéfion to the value of the continued
fraction than any Tational number of smaller denominator. 18 is
this property which has ,givéil the study of conlinued fractions
many practical applical:i{gles.

Cl: If a, = {p[&},,bn} and if a; = pifg; = {boba, . . oD}
withl £i<n gmgl, i g is an integer with 0 < ¢ < ¢, then
O an — el <la. — p/a

for all integ@:s\ﬁ.

Prooféwhe proof is by contradiction. If we set Tepy = Repraf +
q,:_},\‘f,h'en (32.4) shows a, — a; = (—1}/q.Ts1. Hence if we sup-
{'@é‘.e 'p/gq closer to a, then a; we must have

'—~]_/q;Ti+1 < (—‘1) "“(a,, — pXQ) < 1;”(]4'1',?_;.1

where the sign (—1)*! has been introduced to use in what follows.
Adding 1/4.T:;1 to these inequalities, we lind

0 < (-D*a. — (=1)¥¢.Tur — p/g) =
(=) *Has — p/g) < 2/qTu
Noting that Rus1,n 2 by we have T 2 iq and may write
0 < (—=1)*Upi/q: — p/O < 2/q4u1
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Multiplying these inequalitics by the positive integer gg: we find
0 < (=D)™(pig — pgs) < 20/¢us.

Since ¢ = by = 1, it follows from (32.1) that ¢: < gy for i = L.
Since g < ¢: < ¢y, We have 2g/gia < 2, so the inequalities last
displayed require the central infeger to have the value -1; hence
pg — pg: = (—1)** But this is a Diophantine equation which by
the $heory in 12.1 can have af most one solution with 0 < ¢ < ¢:
By (32.3) there is such a solution: pamely, p = Pit, ¢ = g HORS
ever with g = g the inequality 1 < 24/ i1 OF i1 < 21 cpapot
hold; for since gy = bipags + g, it follows that gi = 2fs idor
i > 1. 'This contradiction establishes the theorem. L M

For illustration we may take the previous example apii['ékssert that
45/16 is a better approximation to 1758/625 thantany rational
number p/q with 0 < g <16, gach as 27/10 or39/14.

32.2. Infinite continued fractions. Given any sequence of
rational iritegers oz, . - - i - - With by S Dand b; = Lfori = 1, we
may define a corresponding sequence {é;} of rational numbers by
setling a; = {bo,bs,- - _b:l. Such asequence {a;} is called an infinile
continued fraction and may be Jdesignated by

fas) = [Boby. i< b

C.4: An infinite conii}med fraction is a regular scquence.
for 1<i<k and since

Proof: Since (32.4) is valid here
we have

Risip & bin sqihﬁt Rig1ii - i1 Z Gins
(32.7) .\~;§"~’|ak — | < Vg 13T<E
Since t@iqé form an increasing Sequence of rational integers with
qipa ?f;za > i for i >3 (see BX. 32.5), we
1. =YV to see that

V law — ax] < 1/qvdxn <1/N* for3<N< k.

Since for any assigned rational number ¢ > 0, We By f'ind a positive
integer N > 3 such that Nz > 1/eand thus i /N2 < ¢, it follows that
we can guarantee that laxy — ax] < € for k > N. Therefore by the

definilion in 81.2 the sequence {a:} is regular. )
To continue this development we need to use the notions of order,

absolute value, and the bracket function for real numbcl:s; the
d ¢ will suffice; a rigorous

intuitive descriptions of Chapters 1 an

may apply (32.7) with
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development, following the line of EX. 31.12, may be found in the
source cited in 31.3.

C.5: Any positive irrational real number & may be represented
by an infinite continued fraction.

Proof: The following process is, in general, not complete in a
{inite number of steps, o it cannot properly be called an algorithm;
rather it is a recursive process that can be carried out to any desircd
number of steps:

N
28 A
b= [a], ro=2z— bos L

b= [L/rial, ri=ra—by 12 14 \

By definition of the bracket function we Woulglf~f1ati1rally have
0 < r; < 1,i= 0;but since z is irrational, each rriﬂﬁst be irrational,
so the 0 value is excluded, and we have 0 <\y'< 1, i = 0. Then
1/r; is defined and 1/r; > 1, i 2 0, so t;]:r.a}:b; =1, i=1 Since
z > 0, we have by = 0. Thus the b; are.proper elements for an infinite
continued fraction and we claim thatn= {a@.} = {doby,. . b -]
By induction we may see that thé,construction above makes
(32.8) T = (bipr + Pa-’i}}?; + Pt P> 0.

T b & TG + g -
(I) Wheni =0 We‘hifew,\ using (32.1),

N
_ _ L (b +1 G rdpe kD
& b0+r0 ffa;f 'I/(bl +."1) = (bl + rl)]. 10 - (bl + f‘1)‘10 + g1

I
(IT) If we~dssume (32.8) correct for i, we have only to use (32.9)
and Pefd 1/(bige + rey2) to be able to write

N “\ : e < P + riapi _ (i + rge)pin P
V Gt +riads (baz T )i - @0
which is the form that (32.8) should take for the case { + 1.
From (32.8) and (32.3} it follows that
(32.9) Z— @ = (=D Yqlqus + repgd), 12 0.
Since 0 < rys and § < g; < gu: when i3> 3, it follows that

|2 — ai| < 1/gigiss < 1/ for i >3. Hence hy taking ! sufl
ciently large, say i > N where N? > 1/ ¢, and where € is any assigned
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positive real number, we may make |z — a:| < & for i > N, which
proves that z = {a:}.

It is worth while to note that if zisa rational number the process
described above becomes exactly the Enclid algorithm, but since the
process will now terminate in a finite number of steps, the continued
fraction that is obtained to represent z is finite, instead of infinite.

C.6: If z={a} = {boby.. b .} is an infinite continued
fraction, then the successive convergents always have the following,
order: those of even subscript occur in increasing order and all are®
less than z: those of odd subscript occur in decreasing order apd.ail
are greater than @. If ¢ is an integer such that 0 <g¢ < @) then

< 3

o — wl <|¢—p/al
for all integers p- ~N

Proof: Concerning the order of the convergéuts the proofs are
the same as in C.2. We may use (32.9) toage the order relation
botween « and @, according as i i evenror odd. The result con-
cerning closeness of approximation is proved exactly as in C.3 except
for replacing @, by ¢ and Risi.» by R {bist,biysse .-} = b+ it
and using (32.9) instead of (3255

To illustrate these theorems. e may study @, where % = 21, and
carry forward the recursive{process of C.5 as follows: ¢ = 4 -+ ro,

G = @+ 85 =147

]./T'o =4
]-/rl ?})Yx"l) = ($+1)/4.—_—1+r2,
1/ppy=td /(T — 3) = (z+3)/3= 2+,

Pl 3/ —3) = @+ 3/A=1 10
A= 4e—-D =G DE= AT
AN Y =5/ = H=@+HL=8+r
bhut a‘t.'.';this point we find re = T, SO the process NOW repeats itself.
Fof an adequate notation for this phenomenen let us digress from the
Slpdstration to make certaln definitions. . .
An infinite continued fraction 2 = {bobr - biy...} will be said
to be periodic if there exist jntegers s = 0 and & > 0 such that when-
Ceveri > s, U > s, andi= ¥ mod k, then b, ——-_b,’. We_may use tl}e
same convention as with periodic infinite decimals to write a periodic
infinite continued fraction as follows: -
r = {bu,. . .,bs,i)ﬂ_];,. . -5ba+k}-

With this agreement the example worked above becomes € =



246 * CONTINUED FRACTIONS Chapler 32

{4,1,1,2,1,1,8} with s = 0 and & = 6. The first few convergents for
x appear in the [ollowing table:

b 4 1 1 2 1 i

[==]
[a—

p 1 4 5 9 23 32 35 472 527

g 0 1 1 2 5 7 12 103 115

™\
In illustration of part of C.6 we find the convergents arc arranged as
follows: )

4 < 9/2 < 32/T < 472/103 < z < 327/115 < 55/12 < 28/ < 5.
By (32.9) we know 472/103 is an ap proximation to x coréeet to within
1/(103)(115) = 1/11845 and by C.6 that it isa betgqé’pproximation
than any other rational number of denominator léss'than 103.

A real number of the type (4 + +/M)/C whered, C,M arc rational
integers with € = 0, M > 0, and M nol a farfect square is colled a
real quadratic surd. Such real numbers, {ake on a peculiar mterest
from the standpoint of continued fraqiflehs hecause ol the following
theorem {and its converse). o

C.7: A periodic infinite continued fraction represents a real
quadratic surd. L

.- ~\ . : . .
Proof; Given z = @0,’. s Beborts . . obers) from (32.8) we may
write N

a& = R.s+1,if?a =+ pa1
.,\'“' RH—IQS - QS—l .
and make_the“proof depend upon evalualing R.1 = {hens- - el
This lat® “contimued fraction by its periodic character has the
PTOPQI’L"J Rk+1’ = {herrat,Degrys - . - } = R If we denote the con-
{mﬂts of Roabypd/qa = thas.. bepigt], then by (32.8) we have

_ }_E)M.]"JI);;Ir -}~ pk_l’ Rs+1pkr + pk—l;

Ry = = - —

Reg'ed + q:‘c—lf Rs-{-lq.i;’ -+ qk—-’-f

Hence R, is a solulion of the equalion

¢’ Ropt® + {qued — P ) Ropn — Pr-i = 0.
Since this cquation has rational integers as coeflicients, i1ts solufi_ol'lsr
obtained by the quadralic formula, arc of the form (A + +/MD/C
with € = 2q/ 5 0. Since the discriminant M = (7s1" — .I’k’).2
4 4g5'pr_t’ > 0, the roots are real; furthermore, only one root 18
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positive, o R..; is uniquely delermined as this positive root. Finally,

M

is not a perfect square and R,y is irrational, for if R, were

rational, its rcpresentation as a comtinned fraction would be finite

(se

e mx. 32.7). If we substitute the value of Ry in z and rationalize

the denominator, we find that = is also a quadratic surd.

For exampleifz = {2,1,3}, weset R = 1,3 =14+ 1/8+1/R)
and find 3R% — 3R — 1 = 0, whence R = (3 -+ +/21)/6. Then
p=24+1/R=2+6/3+/2D) =2+ (/2 —3)/2= {1+ VID/%

1t is more difficult to prove that cvery real quadratic surd magbe
represented by a periodic infinite continued fraction (sec Hardy and
Wright, Theorem 177). In particular, surds of the type /M always
have s = 0 and repeating parts that are rather symmefrlo. *

VT = {bobiba. . nln2hl. N

(Sce F. 8. Hall and 8. R. Knight, Higher Algebray Fourth Edition,
§363, New York, Macmillan, 1949.) Ny

These results show in a fascina
conlinucd fractions, that the quadratic ace better behave

other irrationalities. o

EX. 32.1. Fxpand the decim. fFaction

ExX. 32.2. Expand :[:}lé dectmal
Ex. 32.3. Use ajeonlinued fraction to

ting wa)t,'\]’.'rom the standpoint of
d than the

EXFRCISES OV
3.14159265335 as & continued fraction

and show that as =.853/113 is a correct approximation to within

1/(113)(33102). ) _
fraction 2.71828 as a continued fraction.

help solve 53s — 17¢= L.

®x. 32.4. Establish formula (32.2) by induction on &
EX. 32.5. Brove that ¢; > i for i> 3

Ex. 32.6,Show that {134} = {1331} .
ExX. 3243, "Show that represcatation by a continued fraction 18 unique

N

N\

EX

EX.

éxcept for finite continued feactions where exaclly two representations

‘are possible (both finite). See EX- 32.6. .
7298 Prove that (a2} = Va1 1 and that {2¢,8,4a}= 2+ 1.

32.9. Prove that {a.a2d} = Va*+ 2
4, bli__-— /19 has k= 6.

EX. 32.40. Show that /7 has k= 4, b1

©x. 39.41. Show that {3a.2a6a} = v/9e?+3-

Ex. 32.42. Show that+/31 has &= 3 and A/13 has k= 5. et
2 — 1; | AW

EX. 32.43. Use (32.9) and {32.5) to

EX,

chow that |z — ai1|<|

that 1/2giqe < |z — @ [< /gt . .
. 32.44. Investigate Fibonacci numbers, which ere the pi {or ¢) in
= fi}, independently or in relerence hooks.
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EX.

EX.

EX.

EX.
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39.15. Investizgate Pell's Diophantine equation z*— Ay® = N, inde-
pendently or in reference boaks.

29.46. Investigate in reference books the use of continued fractions
in the design of gears.

39.47. On the usual coordinate system where poinls are designated by
P = (r,y) and 0= (0,0), plot the laliice points P;= {(gup:). Use
a; = p:/q; = slope OP; to illustrate graphically every part of theprem
C.6 (F. Klein). ‘ \
39.18. Eslablish a graphic picture of the pericdic charactet, of the
continued fraction representing /M by using Fiz} = = — S for x 2 0
and H(z) = 1/ for > 1, starting with F(v/M) on F and’ proceeding
alternately, horizontally to H and vertically to F. Thﬁé’i‘he tailpiece to
this chapter illustrates /7 = {2,1,1,1,4}. '\\"

1 S




WWhen I use a word, il means jost whal T
choose il to mean—neither more, nor less.
—H. DUMPTY; L, CARROLL} C, DODGSON

CHAPTER 33"

THE FUNDAMENTAL
THEOREM RECONSIDERED

D
¢ x\ w0
33.1. The domain [Re+/10}. 1n 29.3 we studied why the sef of
all ordinary integers might be dges}c’ribed as the rational domain {Re],
and it was suggested for explicitness that the ordinary integers be
described as Tational integérs to distinguish them from the elements
of other number systen{é:which might with equal right also be called
“integers.” O

For reasons whieh we will soon justify, the number system which
we propose to-study is called the “‘domain of /10 over the rational
domain” afids designated [Re+/10]. The numbers A of this
system m’h‘ﬁe indicated as ordered number pairs: A = (a1,@s), 80 it

will bd hecessary in this lesson not %o interpret this notation as

indicaling a greatest common divisor.
y definition the number system [Ra\/f()] consists of all ordered
pairs A = (au,a2) of rational integers @i,0a subject to the following
. tules: '
equality: (@,as) = (bib) if and only if @y = by, @2 = b2
addition: (@,as) + (b2} = (az + buae + ba);
multiplication: (ax,a2)(bi,b) = (aiby + 10ashs, abs + toby).

#Chapter 33 is a basic chapter; a few references to Chapter 29 are required.

249
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Q.1: The system [Ra V101 is a domain.

Proof: A review of the conditions set forth in 29.2 and 29.3
shows that the first requiremeut is to show ihat the equality of
[Ra+/10] is an equals relation; but this follows at once, since the
new equality is delined componentwise in terms of the equality of
rational integers, which is known to be aun equals relation. It is
likewise easy to check that the clements of [Ra~+/10] lorm a com-
mutative group under addition, for addition is delined compodent-
wise in terms of the addition of rational integers, and thefational
integers are known to form a commutative group under theiraddition.
In particular, (0,0) is the zero of [Ra+/10). A

It is obvicus that multiplication is closed lor @iy $ 10azh: and
itbhs +ashy are rational integers whenever b adinitte rational inte-
gers; furthermore, multiplication is well definéd {1 the addition, and
multiplication of rational integers, uscd ingeming the new product,
are well-defined operations. From the symimetry of the components
of the product and the commutative® larws for ralional integers, it
follows that multiplication in [Rad/10] is commulalive. From the
associative and distributive laws o rational integers it follows that
multiplication in [Rax/m]‘ié’:dssociaffre, for by cither scheme of
association we find (a,,as) gf)l,fjé) (en,e2) given by
{alblcl + 10(&1b262 +azb,16N- azhgf.’l), 1.0(1211)282 + (aghl('l +Glhgcl 'f‘albl":Q) } .
There is an identitydC multiplication in [a~/16] provided by (1.0)
since (1,0)(a1,a2) & {a1,a2).

The distribufitelaw relating the addition and multiplication of
[Ra~/10] is,vahd, for we have
(ar,02) {(@b{)’ + (ene2)} = (ana) (by + cib2 + c2)

',‘\ = (albl + 25153 + 10(1252 + 10ases, (I.]bz + ate + ale + (1231)

',\f S = (b 4 10abnabe + ashy) + (@er + 10asea,tez + @)
.»\; = {@1,2){bi,bs) + (anaz){er,ca).

Finally, we must establish the cancellation law for all non-2ere
numbers in [Ra+/T0]. If we consider (a.b) = (0,0) and (a,0) (&y) =
(0,0}, we are led to the Diophantine equations:

ar + 10by = 0, ay + bz =0
This system of equations implies
azy + 10by? = b(10y2 — 22) = 0, az? -+ 10bzy = ale® — 10y?) = -
Thus if (a,b) 5¢ (0,0), then since at least one of a and b is pot 0, we
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employ the cancellation law for rational integers to assert that
#* = 10y2%  Since 10 is not a perfect square, the cquation last given
is impossible in non-zero integers x and y (see EX. 45.4). Hence
(z,y) = (0,0), and this establishes the cancellation law [or non-zero
numbers of [Ra+/10]. This completes the proof that [Ra+/10] is a
domain.

Q.2: In the domain [Ra+/10] the subsystem K of all pumbefs,
of the form (a,0) forms a domain isomorphic to the ratioral
domain [ Ral. R \J)

Proof: We readily check that the one-to-one correghonidence T
defined by (a,0)T = a from K to [ Ra] preserves hoi:hjtfhe ‘bperations
of addition and mulliplication in the respective systerts, for

((a,0) + BT = (e + 50T =e+b= @OT + BT,
(@OBT = @0T =a  FOTeoT.

Fenceforth, with Q.2 in mind, we a€ee'to identify K with [Ra]
and to write a for (2,0) whenever cop¥vedient. :

Q.3: The domain [Ra\/fﬁ}véiiﬂfaiﬂs a solution of the equation
X* = 10. N

Proof: Written at grc@icr length, the equation under considera-
tion appears as (xy)%= (10,0). It is then casy 1o check that
X = (0,1) is suchghat"X? = (0,1)(0,1) = (10,0).

The theorems.£.2 and Q.3 show us that the domain [Ra+/10]
may be thought‘ef as an esclension of the domain [Ra]; for not only
does [Ra \(1\5] contain a subsystem K behaving just like [Ral, bui
olher nu?n@ci‘s of a different characier, for in the ralional doms.un the
equation ‘z* = 10 has no solution. We can now see a mobive fqr
defiting (0,1) = +/10 and then using the symbol [Ra~/10] for 1.\]1.15
dayn: by the brackels that this is a domain

darriain, meaning to indicate :
\(See (.1) whose elements have properties making them deser\.re the
onal integers are used In the

title of “inlegers,” by the Ra that rati :
description of the new domain and are themselves to be found iz the
domain under the isomorphic disguise K (see Q.2), and"by the
/10 that there is present in the new domain an “integer whose
square is “10” (sec Q.3).

In fact, we may now write

(an,as) = (a,0) + (0,00) = (a1,0) + (az0)(0,1)
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to see that under the agreements suggested above, a suitable notation
for {a1,a2) would be as follows:
(a1,az) = + az\/m.

If one has already established the properties of the real number
system, so that a real number /10 is available, this suggests a
new approach to defining [Ra\/ﬁ]. Tlowever, when it is recalled
that the construction of the real number system involves a rather
non-arithmetical study of infinile sequences, it is seen that tpere is
considerable logical merit in insisting on this simple approachjgsing
pairs of rational integers. Nevertheless, the notation 'akﬁ— a:/10
has considerable mnemonic usefulness, since with ils afdithe tules of
addition and multiplication for the number pairs grﬁl}readﬂy Tecon-
structed. )

33.2, Divisibility properties in [Ra%ﬁl With Q.1 in mind
it is natural to attempt a division of b8, integers of [Ra~/10} into
classes according to divisibility ppd[iex:ties as was done for the
rational domain in 5.1.

If ¢ = AB, we will call C a miiftiple of B, and B, a dizisor or faclor
of €. The zero (0,0) is exceptional {rom the point of view, being &
multiple of every integer. 40vwe put it in a class by itself. .

If there are integers(A‘and B such that AB =1 = (1,0), then A
and B will be callé units. (It is shown below that the domain
[Ra+/10] has a plentiful supply of units.)

If an integePis not a unit and is such that P = AB implies that
gitber A orBymust be a unit, then P will be called a prime. (Some
primes ace.éxhibited later.)

Aoy i}teger that is not zero, not a unit, and not a prime, will be
called composile.
¢"\Thus on the basis of rather simple divisibility properties the nte-
Fers of [Ra+/10] fall into four distinct categories.

In discussing questions of divisibility a valuable device IS the
following concept. For cvery integer A = (a1,a2} We define N(A) =
@, — 10az? to be the “norm of A.” Tt s clear that N(A) is a rational
integer. An alternative definition would be to associate with every
integer A = (a1,02), ils conjugale integer A = (@, —@2)s for ther
AA = (N(A),0) = N(A).

The most valuable property of the norm is derived from the
following theorem which shows that every f: actorization of integers

"
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in [Ra+/10] must be accompanied by a factorization of rational
integers,

Q.4: N(AB) = N(A)N(B).

Proof: By direct substitution we may verify that
N(AB) = (aiby + 10ashe)* — 10Ceashe -+ aabi)®
= (@ — 10@)(h? — 10b2) = N(A)N(B).
An alternative proof is suggested in x. 33.3. ' ~\

(Q.3: An integer A is a unit if and only if N(4) = £ )

Proof: By definition A is a unit if and only if there is an futeger B
such that AB = 1. From Q.4 it follows that N(A)N(B) & N(4B) =
N(1) = 1; since N(A) is a rational integer, it follows that a necessary
condition for A to be a unit is that N(4) = S0 Conversely, if
N(A) = =1, then since AA = N(4), we can leB = + A to show

- AB = 1, so that 4 is a unit. LD

From Q.5 it follows that 4 = (21,2) is-avunit if and only if ay,0e

is a solution of one of the equations O

a? — 10a?="+1.
An unusual feature now presentss itsclf for these equations have
infinitely many solutions; hence ¥ Ra+/10] bas infinitely many units.

For cxample, it is readily checked that N(3,1) = —1; hence by
Q.4 it follows that N{S,\)k = (—1)*; hence (3,1)* is a unit for
k=12, ... Moreoven an induction proof will show (3,1)* = (Pegs)
where po=1, g=0; p=3 a=15 and

pk.;{=-> 6P -+ Prty Qrit = 60t @i for k > 1;
hence it follows readily that the units obtained jn this manner are
dis Linet}'éf. Chapter 32). (It is more difficult to prove that all units
are ‘\o‘b’iained from =+(3,1)* where & is any integer, interpreting
6ie A% and A° = 1) . _
N For integers of [Ra 4/10] let us define A 1o be an associate of Bif
and only if there exists a unit U7 such that A = UB.

Q.6: Being an assoctate is an equivalence relation.

Proof: By definition the concept of being an associate is defer-

minaiive. Since (1,0) = 1 is a unit and A = 14, we find that A 18

an associate of itself, so the concept 1S reflexive. If U1s a unit, there

is a companion unit V such that UV = 1; consequently A = UB
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implies VA = VUB = B, so the concept is symmelric. 1f Uand U
are wnits, so is DUy, since by Q.4 and Q.5 we have N({UU) =
N(IONUY = (£ 1{(£1) = +1: therefore A = UB,B = U,C imply
A = (UUDC and show ihe concept of being an associatc o be
transitive. This completes the proof.

From Q.6 it follows that the integers of [Ra~/10] are divided into
mutually exclusive classes of associated integers. Moreover this
division preserves the concepts of the zero, units, primes, and com-
posites. The zero is in a class by itself, and all the unils fall intoboe
class; il onc member of a class is a prime, so are all the otherss'il one
member is composile, so arc all ils associates. The lagt~remrarks
follow since, if P and Q are associates, we have P = UQ: V=VP
where UV = 1; hence from P = AB we can derive D= 4 B, where
A, = VA, B, = B; or convemsely, from Q = AdWe can derive
P — AB where A = UAy, B = Bi. Then by Q¢ and Q.5 we bave
N(A) = £N(4A;), NB) = +N(By). HengaNd P is composite, so
that both of A and B are not units and hehde by Q.5 have norms in
absolute value greater than 1, the same ‘pan be said of A; and By, s0
Q is composite; and conversely. & 3

“If we suppose C = AB, it is_simiple to take any unit U and iis
companion unit ¥ such that U¥\= land towrite G = A UVB =AB
where A; = AU and B, =BV. We will not consider two such
factorizations, which difice only because factors have been replaced
by their associates, eing distinct.

In our first discission of the fundamental theorem of arithmetic
for rational intdgtrs, we limited the argument to positive integers.
Had we considered all rational integers, we would have had to state
the theoreffhin such a way as to allow for the replaccmaent of a prime
p by —p}\n other words for the replacement of a prime by one of its
assoclates. With this in mind, we could restale 1the fundamental

4 *i:h:eo\rem in this form: every rational integer, not zero or i unit, can
he factored into a product of primes, and this [actorization is unigue
except for the order of the prime factors and the replacement ofa
prime by an associate.

We must make these same considerations when we discuss fac-
torization in [ Re+/10], and the situation is cven more critical because
of the great multiplicity of units and hence of associates. When We
compare the primes of one factorization wilh those of anothe
factorization, which is claimed to be distinet, it will be necessary to
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guarantee that Lhe primes used m one factorization are not associates

of the primes used in the other factorization. ' '
With these preliminary remarks in mind, we can anticipate how

the following very special theorem may become of great intcrest.

Q.7: In [Ra+/10] the integers (2,0),(3,00,(2,1),(—2,1} are
primes, and no two of these are associates.

Proof: First we will show that there are no infegers of [Ra\/lﬂl
with norm = 2 or 3, mod 5. For if A = (as,02) We have N(fl) \e
a® — 10a:2, then @® = N(4) mod 5. But for every inleger gs we
have @, = 0,1, or 4 mod 5, not 2 or 3. ) O

Let C represent (2,0) or (3,0) or (2,1) or (—2,1). If G AB, then
by Q.4 we have N(A)N(B) = N(C), where N(CYx'4.9, or —6.
Sinos N(A) cannot be +2 or 3, it follows that amef N(4) or N(B)
must be +1, hence A or B must be a unit, hen{ie ih every case Cis a
prime. 7.\ _

By Q.4 and Q.5 it follows that agsetiated integers must have

equal norms; hence (2,0) and (3,0) withynorms 4 and 9, respectively,

are mot, associales, nor are citheredf these associates of (2,1) and
S 6. Thus only the case of (2,1

(—2,1) which both have the norm — :
and {(—2,1) offers any delayyibut when Wwe examine the equation
(2, @y) = (—2,1), weebtain the equations 2 + 10y = ~2,
2y + 2 = 1; since the sehition & = 7/3,y = —2/3 s nol a 801511;101’1
in rational infegers, itéfd]]ows that (2,1) and {—2,1) are not associates.

33.3. The futidamental theorem reconsidered.

Q.8 Ig;}he domain [Ra+/10] unique faclorization of composite
integer,s}into primes does not bold.

Proof: The rather gpecial results is Q.7 were intended for use in
”ﬂiug proof, since it i only necessary to produce one counier:emmple to
ghow that unique [actorization does not hold. For this counter-

example we use 50) = @ ez
6.0) = @9E.0) = EGD(=2D.

By Q.7, all of (2,0), 3,0), (2,1), (—2,1) are primes of [Ra+/10], and

d factorization are not associates of those of

the primes of the secon _
firet, fo ndards proposéd as a test,

the first factorization. Hence, by the sta sed ¢ s
the integer (6,0) bas two essentially different factorizations I '

primes.
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The fact that the domain [Ra+/10], so like the rational domain in
many respects, fails to have a fundamental thcorem demonstrates
how essential it i that the fundamental theorem in [Ra] he proved;
it also opens up whole new fields of inquiry, such as the discovery of
domains in which there is a fundamental theorem, or the study of a
remedy in those cases, like [Ra+/10], where therc fails to be the
usual sort of [undamental theorem.

If we recall that the proof of the fundamental theorem in Chapter'é
stemmed from a study of the greatest common divisor, whegeas the
usual definition of a greatest common divisor fails in [ Raad107 (sce
EX. 33.4), it will not be too surprising to learn that a remedy for the
anomalous cases, where a fundamental theorem is Jacking, can be
obtained by a suitable generalization of the notign of greatest com-
mon divisor by a scheme known as the theory ef idcals. By this
rather remarkable scheme unique factorizationi is restored. The
theory involved is classical, but too long\'ﬂor inclusion here. The
interested student may refer to treatisés'en algebraic numbers or, for
example, to the MacDuflee text, citedin 1.3.

EXERCISES ¢

EX. 33.1. Consider the sef .Q:)f all matrices of the form

\’\‘N’A-—( ar ag
10a; @

where a | ;:2 are rational integers. Consider the mapping T from

[Rav/19] 46 S defined by (a1,82)T = A. Show that T is an isomor-

phisrr%etween [Ra+/10] and S, the addition and multiplication in S

beifgthe nsual matric operations. _
EX, 33.2: With reference to Ex. 33.7/ show that N(m.a:) In [Ray/10]
{18 the determinant of the corresponding matrix in 8.

BX. 33.3. Using Ex. 32.7 and EX. 33.2 show N{(AB) = N(A)N(B).

EX. 33.4. In [Ray/10] consider A4 = (6,0) and B = (2,0)(2,1). Show that
D=(2,0) and D; = (2,1) are common divisors of A and B, but that
neither js a divisor of the other. Hence the usual definition of a greatest
common divisor {see 5.2) is not useful in [Ra~/10].

The student. should review the concepts in Ex. 30.9 through BX. 30.13
before beginning the next exercises.

Bx. 33.5. Explain why the Gaussian domain [G] might be designated

[Rav'—1].
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EX.

EX.

EX.

EX.

EX.

EX.

EX.

EX.

®

33.6. For a number 4 = {ay,a;) in [G] define the norm by N(A) =
a1 + a;? and the conjugate by A = (@1,—az). Prove that N(A) = AA.
Prove that N{(AB) = N{AYN(B) and compare with (26.1).
33.7. Define A in [G] to be a unit of [G] if and only i there iz a Bin
[G] such that AB = 1= (1,0). Use ux. 33.6 to prove that [G] has only
Jour units.
33.8. Define A and B of [G] Lo be associates if and only if there is a upil
U of [G] such that A = U'B. Prove that every A # (0,0) in [G] hassa
urique associate (,y) such that 0 < 2, 0 = ».
33.9. Define P of [G] to be a prime of [G] if P is not a unit @nd if
P = AB implies that one of A and B must be a unit. Use Ex33.6and
1..1 of 26.1 to show that p = (p,0) is a prime of [G] if and dnly'if pis a
rational prime of the form 4K -T- 3. "G
33.40. Show that for any B (0,0) of [G} and any{ A/of [G] we can
find @ and R in [G] such that \Y;

| A= QB+ R, 0= NR) < NWB
(Hint: Let AB= (zp2), b= N(B), a&wib+ 5, 2= pb+t s,
where |3 ]S B/2, [s2] £ b/2; take Q =\(gnte) and R= A — QB.)
39.41, TUse the “division algorithm” of BxY 33.70 10 construct a “ Euclid
algorithm” for {G] and show that angtwo numbers 4,8 of {G], not both
zero, have a greatest cormmon diyi%br D, unigque up to an associate, and
that there exist numbers X, Yin$G] such that D = AX + BY.
32.19. Use EX. 32.11 to show that if a prime P divides a product AB
in [G], then P must divide.at least one of A and B.

. 3343, Use Ex. 33.6%nd the “fundamental Jemma™ of EX. 33.42 to

show that [G] hag“a™ fundamental theorem”: Every number of [G1,
not zero and nof Aunit, is either a prime, or can be writien as a prod-
uct of prhngs,’¢hi§ representation being unique except for the order of
the primes-and the possibility of replacing a prime by one of its associates.
2314, {Use the fundamental theorem for [G] to show that a rational
pl‘ir}l& of the form p = 4K + 1 can be written in only one way as the

suraof 1wo squares.

N
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